Mathematics Department Stanford University

 Math 51H - Mean value theorem, Taylor's theorem and integralsIf f is a C^{1} real valued function on an open set $U \subset \mathbb{R}^{n}$, we have for any x, h, i, with $\|h\|$ sufficiently small, that

$$
f\left(x+h e_{i}\right)-f(x)=h f^{\prime}\left(x+\theta h e_{i}\right)
$$

for some $\theta \in(0,1)$. To see this, let

$$
F(t)=f\left(x+t h e_{i}\right), t \in[0,1] .
$$

The chain rule shows that F is differentiable, with

$$
F^{\prime}(t)=h\left(D_{i} f\right)\left(x+t h e_{i}\right) ;
$$

the composition of continuous functions being continuous, F is actually C^{1}. Thus, the mean value theorem gives

$$
F(1)-F(0)=F^{\prime}(\theta)
$$

for some $\theta \in(0,1)$. Substituting in F, F^{\prime} yields

$$
\begin{equation*}
f\left(x+h e_{i}\right)-f(x)=h\left(D_{i} f\right)\left(x+\theta h e_{i}\right) . \tag{1}
\end{equation*}
$$

Here is a different way of doing the same. Let's suppose $h>0 ; h<0$ is similar, and $h=0$ is automatically true for any θ. Then let $G:[0, h] \rightarrow \mathbb{R}$ be defined by

$$
G(s)=f\left(x+s e_{i}\right), s \in[0, h] .
$$

Then by the chain rule

$$
G^{\prime}(s)=\left(D_{i} f\right)\left(x+s e_{i}\right) .
$$

On the other hand by the mean value theorem

$$
G(h)-G(0)=h G^{\prime}(c), c \in(0, h) .
$$

Substituting in G

$$
f\left(x+h e_{i}\right)-f(x)=h\left(D_{i} f\right)\left(x+c e_{i}\right) .
$$

Letting $\theta=c / h$, so $\theta \in(0,1)$, we get

$$
f\left(x+h e_{i}\right)-f(x)=h\left(D_{i} f\right)\left(x+\theta h e_{i}\right)
$$

again.
Let's also write this out using the fundamental theorem of calculus: if ϕ is C^{1} on $[a, b]$ then

$$
\phi(b)-\phi(a)=\int_{a}^{b} \phi^{\prime}(s) d s .
$$

Note that a component-by-component check shows that the fundamental theorem of calculus is also valid for \mathbb{R}^{m}-valued f, so we allow such f from now on. Applying this for F, we get

$$
f\left(x+h e_{i}\right)-f(x)=F(1)-F(0)=\int_{0}^{1} F^{\prime}(t) d t=\int_{0}^{1} h\left(D_{i} f\right)\left(x+t h e_{i}\right) d t
$$

i.e.

$$
f\left(x+h e_{i}\right)-f(x)=h \int_{0}^{1}\left(D_{i} f\right)\left(x+t h e_{i}\right) d t .
$$

So what we have in comparison with (11) is that $\left(D_{i} f\right)\left(x+\theta h e_{i}\right)$ is replaced by $\int_{0}^{1}\left(D_{i} f\right)\left(x+t h e_{i}\right) d t$. Now let us work with $h e_{i}$ replaced by a vector $h \in \mathbb{R}^{n}$. For this purpose we should make sure that the line segment between x and $x+h$ is contained in the domain of definition of F, i.e. U; a convenient way
of phrasing this is to make the stronger assumption $B_{\rho}(x) \subset U$, and $\|h\|<\rho$. So let $F(t)=f(x+t h)$, $t \in[0,1]$. By the fundamental theorem of calculus,

$$
F(1)-F(0)=\int_{0}^{1} F^{\prime}(t) d t
$$

and by the chain rule

$$
F^{\prime}(t)=\sum_{i=1}^{n} h_{i}\left(D_{i} f\right)(x+t h) .
$$

Substituting in,

$$
f(x+h)-f(x)=\int_{0}^{1} \sum_{i=1}^{n} h_{i}\left(D_{i} f\right)(x+t h) d t=\sum_{i=1}^{n} h_{i} \int_{0}^{1}\left(D_{i} f\right)(x+t h) d t .
$$

Notice that writing $\left(D_{i} f\right)(x+t h)=\left(D_{i} f\right)(x)+\left(\left(D_{i} f\right)(x+t h)-\left(D_{i} f\right)(x)\right)$ gives

$$
f(x+h)-f(x)=\sum_{i=1}^{n} h_{i}\left(D_{i} f\right)(x)+\sum_{i=1}^{n} h_{i} \int_{0}^{1}\left(\left(D_{i} f\right)(x+t h)-\left(D_{i} f\right)(x)\right) d t
$$

which is a more precise remainder term than in the definition of differentiability (using continuity of the derivative) since we have an explicit error term. Indeed we have that give $\varepsilon>0$ there is $\delta>0$ such that $\|h\|<\delta$ implies $\left\|\left(D_{i} f\right)(x+t h)-\left(D_{i} f\right)(x)\right\|<\varepsilon$ for all i (indeed, for each $\varepsilon>0$ a $\delta_{i}>0$ exists for this statement for $D_{i} f$, let $\delta>0$ be the minimum of these finitely many positive numbers), so for $\|h\|<\delta$,

$$
\left\|\sum_{i=1}^{n} h_{i} \int_{0}^{1}\left(\left(D_{i} f\right)(x+t h)-\left(D_{i} f\right)(x)\right) d t\right\| \leq \sum_{j=1}^{n}\left|h_{i}\right| \varepsilon \leq n \varepsilon\|h\| .
$$

Let's go now one order further in this expansion. Namely, we write

$$
F(1)-F(0)=\int_{0}^{1} F^{\prime}(t) d t=\int_{0}^{1} 1 \cdot F^{\prime}(t) d t=\left.(t-1) F^{\prime}(t)\right|_{0} ^{1}-\int_{0}^{1}(t-1) F^{\prime \prime}(t) d t,
$$

where we integrated by parts, using $t-1$ as an antiderivative of 1 ; we are making this choice so that the $t=1$ boundary term cancels. Thus,

$$
\begin{equation*}
F(1)=F(0)+F^{\prime}(0)+\int_{0}^{1}(1-t) F^{\prime \prime}(t) d t . \tag{2}
\end{equation*}
$$

Now, as above $F^{\prime}(t)=\sum_{i=1}^{n} h_{i}\left(D_{i} f\right)(x+t h)$, so applying the chain rule again,

$$
F^{\prime \prime}(t)=\sum_{i=1}^{n} h_{i} \sum_{j=1}^{n} h_{j}\left(D_{j} D_{i} f\right)(x+t h)=\sum_{i=1}^{n} \sum_{j=1}^{n} h_{i} h_{j}\left(D_{j} D_{i} f\right)(x+t h)
$$

Substitution into (2) yields

$$
\begin{equation*}
f(x+h)=f(x)+\sum_{i=1}^{n} h_{i}\left(D_{i} f\right)(x)+\sum_{i, j=1}^{n} h_{i} h_{j} \int_{0}^{1}(1-t)\left(D_{i} D_{j} f\right)(x+t h) d t . \tag{3}
\end{equation*}
$$

This is Taylor's theorem with second order integral remainder. Rewriting as before, using $\int_{0}^{1}(1-t) d t=$ $-\left.\frac{1}{2}(1-t)^{2}\right|_{0} ^{1}=\frac{1}{2}$,

$$
\begin{aligned}
f(x+h)=f(x)+\sum_{i=1}^{n} h_{i}\left(D_{i} f\right)(x) & +\frac{1}{2} \sum_{i, j=1}^{n} h_{i} h_{j}\left(D_{i} D_{j} f\right)(x) \\
& +\sum_{i, j=1}^{n} h_{i} h_{j} \int_{0}^{1}(1-t)\left[\left(D_{i} D_{j} f\right)(x+t h)-\left(D_{i} D_{j} f\right)(x)\right] d t
\end{aligned}
$$

Again, using the continuity of the partials, denoting the last term by $E(x, h)$, given $\varepsilon>0$ there is $\delta>0$ such that $\|h\|<\delta$ implies $\left\|D_{i} D_{j} f(x+h)-D_{i} D_{j} f(x)\right\|<\varepsilon$ (for each i, j, there is a $\delta_{i j}>0$ with this property, and then take δ as the minimum of these), and then

$$
\begin{aligned}
\|E(x, h)\| & \leq \sum_{i, j=1}^{n}\|h\|^{2} \int_{0}^{1}(1-t)\left\|\left(D_{i} D_{j} f\right)(x+t h)-\left(D_{i} D_{j} f\right)(x)\right\| d t \\
& \leq \sum_{i, j=1}^{n}\|h\|^{2} \int_{0}^{1}(1-t) \varepsilon d t=\left.n^{2}\|h\|^{2} \frac{\varepsilon}{2}(1-t)^{2}\right|_{0} ^{1}=n^{2} \frac{\varepsilon}{2}\|h\|^{2}<\|h\|^{2} n^{2} \varepsilon
\end{aligned}
$$

follows, so given $\varepsilon^{\prime}>0$, choosing $\varepsilon=\varepsilon^{\prime} / n^{2}$, this $\delta>0$ yields

$$
\lim _{h \rightarrow 0}\|h\|^{-2}\|E(x, h)\|=0
$$

Assuming F is C^{k}, proceeding inductively, we get

$$
\begin{equation*}
F(1)=\sum_{j=0}^{k-1} \frac{1}{j!} D^{j} F(0)+\frac{1}{(k-1)!} \int_{0}^{1}(1-t)^{k-1} D^{k} F(t) d t \tag{4}
\end{equation*}
$$

from (2), as is straightforward to check. Also, using the chain rule inductively

$$
D^{\ell} F(t)=\sum_{i_{1}=1}^{n} \ldots \sum_{i_{\ell}=1}^{n} h_{i_{1}} \ldots h_{i_{\ell}}\left(D_{i_{1}} \ldots D_{i_{\ell}} f\right)(x+t h)
$$

Hence we conclude Taylor's theorem with an integral remainder formula as above:

Theorem 1 If $x \in \mathbb{R}^{n}, \rho>0, f: B_{\rho}(x) \rightarrow \mathbb{R}^{m}$ is C^{k} then for $\|h\|<\rho$,

$$
\begin{aligned}
f(x+h)= & \sum_{j=0}^{k-1} \sum_{i_{1}=1}^{n} \ldots \sum_{i_{j}=1}^{n} \frac{1}{j!} h_{i_{1}} \ldots h_{i_{j}}\left(D_{i_{1}} \ldots D_{i_{j}} f\right)(x) \\
& +\sum_{i_{1}=1}^{n} \ldots \sum_{i_{k}=1}^{n} \frac{1}{(k-1)!} h_{i_{1}} \ldots h_{i_{k}} \int_{0}^{1}(1-t)^{k-1}\left(D_{i_{1}} \ldots D_{i_{k}} f\right)(x+t h) d t
\end{aligned}
$$

Arguing as above using the continuity of the partial derivatives, if we write

$$
\left(D_{i_{1}} \ldots D_{i_{k}} f\right)(x+t h)=\left(D_{i_{1}} \ldots D_{i_{k}} f\right)(x)+\left(\left(D_{i_{1}} \ldots D_{i_{k}} f\right)(x+t h)-\left(D_{i_{1}} \ldots D_{i_{k}} f\right)(x)\right)
$$

using $\int_{0}^{1}(1-t)^{k-1} d t=-\left.\frac{1}{k}(1-t)^{k}\right|_{0} ^{1}=\frac{1}{k}$, we get

$$
\begin{aligned}
& f(x+h)=\sum_{j=0}^{k} \sum_{i_{1}=1}^{n} \ldots \sum_{i_{j}=1}^{n} \frac{1}{j!} h_{i_{1}} \ldots h_{i_{j}}\left(D_{i_{1}} \ldots D_{i_{j}} f\right)(x)+E_{k}(x, h) \\
& E_{k}(x, h)=\sum_{i_{1}=1}^{n} \ldots \sum_{i_{k}=1}^{n} \frac{1}{(k-1)!} h_{i_{1}} \ldots h_{i_{k}} \int_{0}^{1}(1-t)^{k-1}\left(\left(D_{i_{1}} \ldots D_{i_{k}} f\right)(x+t h)-\left(D_{i_{1}} \ldots D_{i_{k}} f\right)(x+t h)\right) d t
\end{aligned}
$$

and

$$
\lim _{h \rightarrow 0}\|h\|^{-k}\left\|E_{k}(x, h)\right\|=0
$$

Note: if f is real valued, one can get an alternative version of Taylor's theorem: there exists $\theta \in(0,1)$ such that

$$
\begin{aligned}
f(x+h)=\sum_{j=0}^{k-1} & \sum_{i_{1}=1}^{n} \ldots \sum_{i_{j}=1}^{n} \frac{1}{j!} h_{i_{1}} \ldots h_{i_{j}}\left(D_{i_{1}} \ldots D_{i_{j}} f\right)(x) \\
& +\sum_{i_{1}=1}^{n} \ldots \sum_{i_{k}=1}^{n} \frac{1}{k!} h_{i_{1}} \ldots h_{i_{k}}\left(D_{i_{1}} \ldots D_{i_{k}} f\right)(x+\theta h) .
\end{aligned}
$$

Notice that this is just the statement that there exists $\theta \in(0,1)$ such that
$\frac{1}{k} \sum_{i_{1}=1}^{n} \ldots \sum_{i_{k}=1}^{n} h_{i_{1}} \ldots h_{i_{k}}\left(D_{i_{1}} \ldots D_{i_{k}} f\right)(x+\theta h)=\sum_{i_{1}=1}^{n} \ldots \sum_{i_{k}=1}^{n} h_{i_{1}} \ldots h_{i_{k}} \int_{0}^{1}(1-t)^{k-1}\left(D_{i_{1}} \ldots D_{i_{k}} f\right)(x+t h) d t$,
i.e. if we let

$$
\phi(t)=\sum_{i_{1}=1}^{n} \ldots \sum_{i_{k}=1}^{n} h_{i_{1}} \ldots h_{i_{k}}\left(D_{i_{1}} \ldots D_{i_{k}} f\right)(x+t h)
$$

then there exists $\theta \in(0,1)$ such that

$$
\phi(\theta)=\int_{0}^{1} k(1-t)^{k-1} \phi(t) d t .
$$

To see this, let $I=\int_{0}^{1} k(1-t)^{k-1} \phi(t) d t$, and note that there must exist $t_{1}, t_{2} \in[0,1]$ such that $\phi\left(t_{1}\right) \leq I$ and $\phi\left(t_{2}\right) \geq I$ for if say $\phi(t)>I$ for all $t \in[0,1]$ then

$$
I=\int_{0}^{1} k(1-t)^{k-1} \phi(t) d t>\int_{0}^{1} k(1-t)^{k-1} I d t=-\left.(1-t)^{k}\right|_{0} ^{1} I=I,
$$

which is a contradiction. Having found such t_{1}, t_{2}, if ϕ at either one of them is I, we are done, otherwise suppose $t_{1}<t_{2}$ (with $t_{1}>t_{2}$ analogous), and use the intermediate value theorem: a continuous realvalued function on $\left[t_{1}, t_{2}\right]$ with $\phi\left(t_{1}\right)<\phi\left(t_{2}\right)$ attains all values in [$\left.\phi\left(t_{1}\right), \phi\left(t_{2}\right)\right]$, in particular attains the value I in the interval $\left(t_{1}, t_{2}\right)$; proving the claim, and completing the proof of the mean value form of Taylor's theorem.

