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Math 51H – Rearranging series

Recall first that a series
∑∞

n=1 an, where an ∈ V , V a normed vector space, converges if the sequence

of partial sums, sk =
∑k

n=1 an does, and one writes

∞∑
n=1

an = lim sk.

Recall also that a series converges absolutely if
∑∞

n=1 ‖an‖ converges; note that this is a real valued
series with non-negative terms. If an are real, ‖an‖ is simply |an|, hence the terminology. We then
have:

Theorem 1 If V is a complete normed vector space, then every absolutely convergent series converges.

Proof: Suppose
∑∞

n=1 an is absolutely convergent. Since V is complete, we just need to show that the

sequence of partials sums, {sk}∞k=1, sk =
∑k

n=1 an, is Cauchy, since by definition of completeness that
implies the convergence of {sk}∞k=1.

But for n > m,

‖sn − sm‖ = ‖
n∑

j=1

aj −
m∑
j=1

aj‖ = ‖
n∑

j=m+1

aj‖ ≤
n∑

j=m+1

‖aj‖.

The right hand side is exactly the difference between the corresponding partial sums of
∑∞

j=1 ‖aj‖.
Namely, with σn =

∑n
j=1 ‖aj‖, and for n > m, we have

|σn − σm| = σn − σm =
n∑

j=m+1

‖aj‖,

where we used that ‖aj‖ ≥ 0, so the sequence of partial sums is increasing, in order to drop the
absolute value. In combination,

‖sn − sm‖ ≤ |σn − σm|,
at first when n > m, but the same argument works if n < m with n,m interchanged, and if n = m,
both sides vanish.

So now to prove that {sk}∞k=1 is Cauchy, let ε > 0. Since {σk}∞k=1 converges, it is Cauchy, so there
exists N ∈ N+ such that for n,m ≥ N , |σn−σm| < ε. Then for n,m ≥ N , ‖sn− sm‖ ≤ |σn−σm| < ε,
completing the proof. �

While the problem set shows that the rearrangement of series that do not converge absolutely leads
to many potential consequences (divergence, convergence to a different limit), absolutely convergent
series are well-behaved. First:

Definition 1 A rearrangement of
∑∞

n=1 an is a series
∑∞

n=1 aj(n), where j : N+ → N+ is a bijection.

Let us consider non-negative series first (such as the norms of the terms of an arbitrary series).

Theorem 2 Suppose an ≥ 0 for all n ∈ N+, an real. Let S be the set of all finite sums of the an,
i.e. the set of all sums

∑
n∈B an where B ⊂ N+ is finite. Then

∑∞
n=1 an converges if and only if S is

bounded, and in that case
∑∞

n=1 an = supS.

Proof: Let sk =
∑k

n=1 an be the kth partial sum, and R be the set of partial sums {sk : k ∈ N+}. We
already know that the increasing sequence {sk}∞k=1 converges if and only it is bounded above, i.e. iff
R is bounded above, and in that case lim sk = supR.



Now R ⊂ S, so if S is bounded above so is R, and supR ≤ supS since supS is an upper bound for S,
thus for R, and supR is the least upper bound.

On the other hand, let B ⊂ N+ finite, and let K = maxB (exists because B is finite). Then sK =∑K
n=1 an ≥

∑
n∈B an since B ⊂ {1, 2, . . . ,K} and since an ≥ 0. Thus for all elements s =

∑
n∈B an,

B finite, of S, there exists r = rK ∈ R such that r ≥ s. Correspondingly, if R is bounded above, then
so is S, with supR ≥ r ≥ s for all s ∈ S, i.e. supR is an upper bound for S, so supR ≥ supS.

Thus, if either one of S,R is bounded above, so is the other, i.e. both are bounded above, and one has
supR ≤ supS as well as supR ≥ supS, so the two are equal: supS = supR =

∑∞
n=1 an. �

As an immediate consequence we have

Theorem 3 Suppose an ≥ 0 for all n, an real, and
∑∞

n=1 an converges. Then any rearrangement∑∞
n=1 aj(n) converges and

∑∞
n=1 an =

∑∞
n=1 aj(n).

Proof: This is very easy now: let S be the set of all finite sums of terms in the series as above. By the
previous theorem,

∑∞
n=1 an converges implies that S is bounded above and

∑∞
n=1 an = supS. But the

set of finite sums of terms of the rearranged series is also S! Thus, again by the previous theorem, the
rearranged series also converges, with

∑∞
n=1 aj(n) = supS. Combining these two proves the theorem.

�

This can be used to show that real valued absolutely convergent series can be rearranged: write an =
pn−qn with pn, qn ≥ 0 being the ‘positive part’ and ‘negative part’ as in the text; if

∑∞
n=1 an converges

absolutely then
∑∞

n=1 pn and
∑∞

n=1 qn converge since pn, qn ≤ |an|, but these can be rearranged by
the previous theorem, to converge to the same limit, and then

∑∞
n=1 aj(n) also converges as aj(n) =

pj(n) − qj(n), with

∞∑
n=1

aj(n) =

∞∑
n=1

pj(n) −
∞∑
n=1

qj(n) =

∞∑
n=1

pn −
∞∑
n=1

qn =

∞∑
n=1

an.

The general theorem is

Theorem 4 If V a complete normed vector space,
∑∞

n=1 an converges absolutely, then any rearrange-
ment

∑∞
n=1 aj(n) converges absolutely and

∑∞
n=1 an =

∑∞
n=1 aj(n).

Proof: We already know that
∑∞

n=1 an converging absolutely, i.e.
∑∞

n=1 ‖an‖ converging, implies∑∞
n=1 ‖aj(n)‖ converging, i.e.

∑∞
n=1 aj(n) converging absolutely (and in particular converging). Thus,

the only remaining statement is to show the equality of the sums:
∑∞

n=1 an =
∑∞

n=1 aj(n).

The key idea of the proof is that absolute convergence means given any ε > 0 that there are finitely
many terms in the series such that if one takes any other finitely many terms, the sum of their norms
is < ε.

So let ε > 0. First, since
∑∞

k=1 ‖ak‖ converges, thus is Cauchy, means that there exists N1 such that
n,m ≥ N1 implies |σn − σm| < ε, where σn =

∑n
i=1 ‖ai‖. Thus, for n > m = N1,

n∑
i=N1+1

‖ai‖ = σn − σN1 < ε.

This is exactly the statement that any finitely many of the ai which do not include a1, . . . , aN1 have the
sum of their norms < ε. Indeed, suppose B ⊂ N+ is finite with all elements ≥ N1 +1. Let K = maxB



(finite set, so maximum exists), and observe that for each i ∈ B, i ∈ {N1 + 1, N1 + 2, . . . ,K}. Thus∑
i∈B ‖ai‖ ≤

∑K
i=N1+1 ‖ai‖ < ε. Hence, by the triangle inequality one also has

‖
∑
i∈B

ai‖ ≤
∑
i∈B
‖ai‖ < ε.

Now, let s =
∑∞

n=1 an, resp. r =
∑∞

n=1 aj(n), and let {sk}∞k=1, resp. {rk}∞k=1 be sequence of partial sums
of the two series. Let N2 = maxA, A = {j−1(1), . . . , j−1(N1)}, so for n ≥ N2 + 1, j(n) /∈ {1, . . . , N1}.
Thus, for n ≥ N = max{N1, N2}, the terms of both sn and rn include ai for all i ≤ N1. Thus,

sn − rn =
n∑

i=1

ai −
n∑

i=1

aj(i) =
n∑

i=N1+1

ai −
∑

i∈{1,...,n}\A

ai,

where on the right hand side we dropped
∑N1

i=1 ai =
∑

i∈A aj(i) from both sums whose difference we
are taking. But {N1 + 1, . . . , n} and {1, . . . , n} \A are finite sets disjoint from {1, . . . , N1}. Thus, by
the above observation, applied with B = {N1 + 1, . . . , n}, resp. B = {1, . . . , n} \A∥∥∥ n∑

i=N1+1

ai

∥∥∥ < ε,
∥∥∥ ∑
i∈{1,...,n}\A

ai

∥∥∥ < ε.

We thus conclude that

‖sn − rn‖ ≤
∥∥∥ n∑
i=N1+1

ai

∥∥∥+
∥∥∥ ∑
i∈{1,...,n}\A

ai

∥∥∥ < 2ε.

In summary, we have shown that for all ε > 0 there exists N such that for n ≥ N , |sn− rn| < 2ε. This
shows that lim(sn − rn) = 0, and thus lim sn = lim rn, since both sequences of partial sums converge.
�


