Mathematics Department Stanford University
 Math 51H - Rearranging series

Recall first that a series $\sum_{n=1}^{\infty} a_{n}$, where $a_{n} \in V, V$ a normed vector space, converges if the sequence of partial sums, $s_{k}=\sum_{n=1}^{k} a_{n}$ does, and one writes

$$
\sum_{n=1}^{\infty} a_{n}=\lim s_{k} .
$$

Recall also that a series converges absolutely if $\sum_{n=1}^{\infty}\left\|a_{n}\right\|$ converges; note that this is a real valued series with non-negative terms. If a_{n} are real, $\left\|a_{n}\right\|$ is simply $\left|a_{n}\right|$, hence the terminology. We then have:

Theorem 1 If V is a complete normed vector space, then every absolutely convergent series converges.
Proof: Suppose $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent. Since V is complete, we just need to show that the sequence of partials sums, $\left\{s_{k}\right\}_{k=1}^{\infty}, s_{k}=\sum_{n=1}^{k} a_{n}$, is Cauchy, since by definition of completeness that implies the convergence of $\left\{s_{k}\right\}_{k=1}^{\infty}$.
But for $n>m$,

$$
\left\|s_{n}-s_{m}\right\|=\left\|\sum_{j=1}^{n} a_{j}-\sum_{j=1}^{m} a_{j}\right\|=\left\|\sum_{j=m+1}^{n} a_{j}\right\| \leq \sum_{j=m+1}^{n}\left\|a_{j}\right\| .
$$

The right hand side is exactly the difference between the corresponding partial sums of $\sum_{j=1}^{\infty}\left\|a_{j}\right\|$. Namely, with $\sigma_{n}=\sum_{j=1}^{n}\left\|a_{j}\right\|$, and for $n>m$, we have

$$
\left|\sigma_{n}-\sigma_{m}\right|=\sigma_{n}-\sigma_{m}=\sum_{j=m+1}^{n}\left\|a_{j}\right\|,
$$

where we used that $\left\|a_{j}\right\| \geq 0$, so the sequence of partial sums is increasing, in order to drop the absolute value. In combination,

$$
\left\|s_{n}-s_{m}\right\| \leq\left|\sigma_{n}-\sigma_{m}\right|,
$$

at first when $n>m$, but the same argument works if $n<m$ with n, m interchanged, and if $n=m$, both sides vanish.
So now to prove that $\left\{s_{k}\right\}_{k=1}^{\infty}$ is Cauchy, let $\varepsilon>0$. Since $\left\{\sigma_{k}\right\}_{k=1}^{\infty}$ converges, it is Cauchy, so there exists $N \in \mathbb{N}^{+}$such that for $n, m \geq N,\left|\sigma_{n}-\sigma_{m}\right|<\varepsilon$. Then for $n, m \geq N,\left\|s_{n}-s_{m}\right\| \leq\left|\sigma_{n}-\sigma_{m}\right|<\varepsilon$, completing the proof.
While the problem set shows that the rearrangement of series that do not converge absolutely leads to many potential consequences (divergence, convergence to a different limit), absolutely convergent series are well-behaved. First:

Definition $1 A$ rearrangement of $\sum_{n=1}^{\infty} a_{n}$ is a series $\sum_{n=1}^{\infty} a_{j(n)}$, where $j: \mathbb{N}^{+} \rightarrow \mathbb{N}^{+}$is a bijection.
Let us consider non-negative series first (such as the norms of the terms of an arbitrary series).
Theorem 2 Suppose $a_{n} \geq 0$ for all $n \in \mathbb{N}^{+}$, a_{n} real. Let S be the set of all finite sums of the a_{n}, i.e. the set of all sums $\sum_{n \in B} a_{n}$ where $B \subset \mathbb{N}^{+}$is finite. Then $\sum_{n=1}^{\infty} a_{n}$ converges if and only if S is bounded, and in that case $\sum_{n=1}^{\infty} a_{n}=\sup S$.

Proof: Let $s_{k}=\sum_{n=1}^{k} a_{n}$ be the k th partial sum, and R be the set of partial sums $\left\{s_{k}: k \in \mathbb{N}^{+}\right\}$. We already know that the increasing sequence $\left\{s_{k}\right\}_{k=1}^{\infty}$ converges if and only it is bounded above, i.e. iff R is bounded above, and in that case $\lim s_{k}=\sup R$.

Now $R \subset S$, so if S is bounded above so is R, and $\sup R \leq \sup S$ since $\sup S$ is an upper bound for S, thus for R, and $\sup R$ is the least upper bound.
On the other hand, let $B \subset \mathbb{N}^{+}$finite, and let $K=\max B$ (exists because B is finite). Then $s_{K}=$ $\sum_{n=1}^{K} a_{n} \geq \sum_{n \in B} a_{n}$ since $B \subset\{1,2, \ldots, K\}$ and since $a_{n} \geq 0$. Thus for all elements $s=\sum_{n \in B} a_{n}$, B finite, of S, there exists $r=r_{K} \in R$ such that $r \geq s$. Correspondingly, if R is bounded above, then so is S, with $\sup R \geq r \geq s$ for all $s \in S$, i.e. sup R is an upper bound for S, so $\sup R \geq \sup S$.

Thus, if either one of S, R is bounded above, so is the other, i.e. both are bounded above, and one has $\sup R \leq \sup S$ as well as $\sup R \geq \sup S$, so the two are equal: $\sup S=\sup R=\sum_{n=1}^{\infty} a_{n}$.
As an immediate consequence we have

Theorem 3 Suppose $a_{n} \geq 0$ for all n, a_{n} real, and $\sum_{n=1}^{\infty} a_{n}$ converges. Then any rearrangement $\sum_{n=1}^{\infty} a_{j(n)}$ converges and $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{j(n)}$.

Proof: This is very easy now: let S be the set of all finite sums of terms in the series as above. By the previous theorem, $\sum_{n=1}^{\infty} a_{n}$ converges implies that S is bounded above and $\sum_{n=1}^{\infty} a_{n}=\sup S$. But the set of finite sums of terms of the rearranged series is also S ! Thus, again by the previous theorem, the rearranged series also converges, with $\sum_{n=1}^{\infty} a_{j(n)}=\sup S$. Combining these two proves the theorem.

This can be used to show that real valued absolutely convergent series can be rearranged: write $a_{n}=$ $p_{n}-q_{n}$ with $p_{n}, q_{n} \geq 0$ being the 'positive part' and 'negative part' as in the text; if $\sum_{n=1}^{\infty} a_{n}$ converges absolutely then $\sum_{n=1}^{\infty} p_{n}$ and $\sum_{n=1}^{\infty} q_{n}$ converge since $p_{n}, q_{n} \leq\left|a_{n}\right|$, but these can be rearranged by the previous theorem, to converge to the same limit, and then $\sum_{n=1}^{\infty} a_{j(n)}$ also converges as $a_{j(n)}=$ $p_{j(n)}-q_{j(n)}$, with

$$
\sum_{n=1}^{\infty} a_{j(n)}=\sum_{n=1}^{\infty} p_{j(n)}-\sum_{n=1}^{\infty} q_{j(n)}=\sum_{n=1}^{\infty} p_{n}-\sum_{n=1}^{\infty} q_{n}=\sum_{n=1}^{\infty} a_{n} .
$$

The general theorem is

Theorem 4 If V a complete normed vector space, $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, then any rearrangement $\sum_{n=1}^{\infty} a_{j(n)}$ converges absolutely and $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{j(n)}$.

Proof: We already know that $\sum_{n=1}^{\infty} a_{n}$ converging absolutely, i.e. $\sum_{n=1}^{\infty}\left\|a_{n}\right\|$ converging, implies $\sum_{n=1}^{\infty}\left\|a_{j(n)}\right\|$ converging, i.e. $\sum_{n=1}^{\infty} a_{j(n)}$ converging absolutely (and in particular converging). Thus, the only remaining statement is to show the equality of the sums: $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{j(n)}$.
The key idea of the proof is that absolute convergence means given any $\varepsilon>0$ that there are finitely many terms in the series such that if one takes any other finitely many terms, the sum of their norms is $<\varepsilon$.
So let $\varepsilon>0$. First, since $\sum_{k=1}^{\infty}\left\|a_{k}\right\|$ converges, thus is Cauchy, means that there exists N_{1} such that $n, m \geq N_{1}$ implies $\left|\sigma_{n}-\sigma_{m}\right|<\varepsilon$, where $\sigma_{n}=\sum_{i=1}^{n}\left\|a_{i}\right\|$. Thus, for $n>m=N_{1}$,

$$
\sum_{i=N_{1}+1}^{n}\left\|a_{i}\right\|=\sigma_{n}-\sigma_{N_{1}}<\varepsilon .
$$

This is exactly the statement that any finitely many of the a_{i} which do not include $a_{1}, \ldots, a_{N_{1}}$ have the sum of their norms $<\varepsilon$. Indeed, suppose $B \subset \mathbb{N}^{+}$is finite with all elements $\geq N_{1}+1$. Let $K=\max B$
(finite set, so maximum exists), and observe that for each $i \in B, i \in\left\{N_{1}+1, N_{1}+2, \ldots, K\right\}$. Thus $\sum_{i \in B}\left\|a_{i}\right\| \leq \sum_{i=N_{1}+1}^{K}\left\|a_{i}\right\|<\varepsilon$. Hence, by the triangle inequality one also has

$$
\left\|\sum_{i \in B} a_{i}\right\| \leq \sum_{i \in B}\left\|a_{i}\right\|<\varepsilon .
$$

Now, let $s=\sum_{n=1}^{\infty} a_{n}$, resp. $r=\sum_{n=1}^{\infty} a_{j(n)}$, and let $\left\{s_{k}\right\}_{k=1}^{\infty}$, resp. $\left\{r_{k}\right\}_{k=1}^{\infty}$ be sequence of partial sums of the two series. Let $N_{2}=\max A, A=\left\{j^{-1}(1), \ldots, j^{-1}\left(N_{1}\right)\right\}$, so for $n \geq N_{2}+1, j(n) \notin\left\{1, \ldots, N_{1}\right\}$. Thus, for $n \geq N=\max \left\{N_{1}, N_{2}\right\}$, the terms of both s_{n} and r_{n} include a_{i} for all $i \leq N_{1}$. Thus,

$$
s_{n}-r_{n}=\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} a_{j(i)}=\sum_{i=N_{1}+1}^{n} a_{i}-\sum_{i \in\{1, \ldots, n\} \backslash A} a_{i},
$$

where on the right hand side we dropped $\sum_{i=1}^{N_{1}} a_{i}=\sum_{i \in A} a_{j(i)}$ from both sums whose difference we are taking. But $\left\{N_{1}+1, \ldots, n\right\}$ and $\{1, \ldots, n\} \backslash A$ are finite sets disjoint from $\left\{1, \ldots, N_{1}\right\}$. Thus, by the above observation, applied with $B=\left\{N_{1}+1, \ldots, n\right\}$, resp. $B=\{1, \ldots, n\} \backslash A$

$$
\left\|\sum_{i=N_{1}+1}^{n} a_{i}\right\|<\varepsilon, \quad\left\|\sum_{i \in\{1, \ldots, n\} \backslash A} a_{i}\right\|<\varepsilon .
$$

We thus conclude that

$$
\left\|s_{n}-r_{n}\right\| \leq\left\|\sum_{i=N_{1}+1}^{n} a_{i}\right\|+\left\|\sum_{i \in\{1, \ldots, n\} \backslash A} a_{i}\right\|<2 \varepsilon .
$$

In summary, we have shown that for all $\varepsilon>0$ there exists N such that for $n \geq N,\left|s_{n}-r_{n}\right|<2 \varepsilon$. This shows that $\lim \left(s_{n}-r_{n}\right)=0$, and thus $\lim s_{n}=\lim r_{n}$, since both sequences of partial sums converge.

