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75 MINUTES

Unless otherwise indicated, you can use results
covered in lecture or homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded

Q.1
Q.2
Q.3
Q.4

T/25

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)



Name: Page 1/4

1(a) (3 points.) (i) Give the definition of “U is open” and “C is closed” as applied to subsets
U,C ⊂ Rn, and (ii) give the proof that if C1, C2 are closed then C1 ∪C2 is closed, and if U1, U2 are
open then U1 ∩ U2 is open.

Note: In (ii), at least one of the two statements should be shown directly from the definition. You may either show
the other directly, or by using an appropriate theorem.

1(b) (3 points) (i) For U ⊂ Rn open, give the definition of f : U → Rk being continuous, and (ii)
show that if f : U → V ⊂ Rk is continuous, U ⊂ Rn, V ⊂ Rk are open, g : V → Rm is continuous
then g ◦ f , defined by (g ◦ f)(x) = g(f(x)), is continuous.
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2(a) (3 points.) Let f : R2 → R be defined by f(x, y) = 1
7(x7 +y7)−64x−y. Find all the critical

points (i.e. points where ∇R2f = 0) of f , and discuss whether these points are local max/min for
f . Justify all claims either with proof or by using a theorem from lecture.

2(b) (3 points.) Let f : R2 → R be defined by f(x, y) = 1 + 3x2 + y6 + 4(x− 1)4. Show that f is
bounded below and it attains its minimum.

Note: you do not need to find where the minimum is attained. Hint: show first that if |x| ≥ 3 or |y| ≥ 2 then
f(x, y) ≥ 65. What is f(0, 0)?
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3(a) (3 points) Consider the power series
∑∞

n=1
xn

n . (i) Find its radius of convergence ρ. (ii) Let
f(x) =

∑∞
n=1

xn

n , |x| < ρ. Show that f ′(x) = 1
1−x for |x| < ρ.

3(b) (3 points): (i) A sequence of functions fn : [a, b] → R converges uniformly to a function
f : [a, b] → R if for all ε > 0 there is N ∈ N+ such that n ≥ N implies that sup{|fn(x) − f(x)| :
x ∈ [a, b]} < ε. Show that if fn are continuous and fn → f uniformly then f is continuous.

Hint: continuity of f at x requires given x ∈ [a, b] and ε > 0 finding δ > 0 with certain properties. Express |f(y)−f(x)|
in terms of |fn(y)− fn(x)| and other expressions, and choose n well.
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4(a) (3 points.) (i) Give the definition of a curve γ : [a, b] → Rn having finite length, and for
curves of finite length state the definition of the “length of a curve γ : [a, b]→ Rn.” (ii) Show that
if γ : [a, b]→ Rn has the property that there is a constant K > 0 such that ‖γ(t)−γ(t ′)‖ ≤ K|t− t ′|
for t, t ′ ∈ [a, b] (one says γ is Lipschitz) then γ has finite length.

4(b) (4 points.) (i) Show directly (without using the corollary of the implicit function theorem
that we have not proved) that the set M = {(x, y, z) ∈ R3 : x2 + y2 = z2 + 1} is a 2-dimensional
C1 submanifold of R3. (ii) Find the tangent space of M at the point (1, 1, 1), and give a basis for
it.

Note: in fact, M is a C∞ submanifold. You may use that
√

: (0,∞)→ (0,∞) is C∞.
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