Mathematics Department Stanford University Math 51H Second Mid-Term, November 10, 2015

Solutions

Unless otherwise indicated, you can use results covered in lecture or homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded

Q. 1	
Q.2	
Q.3	
Q. 4	
T $/ 25$	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed) \qquad

1(a) (3 points.) (i) Give the definition of " U is open" and " C is closed" as applied to subsets $U, C \subset \mathbb{R}^{n}$, and (ii) give the proof that if C_{1}, C_{2} are closed then $C_{1} \cup C_{2}$ is closed, and if U_{1}, U_{2} are open then $U_{1} \cap U_{2}$ is open.
Note: In (ii), at least one of the two statements should be shown directly from the definition. You may either show the other directly, or by using an appropriate theorem.

Solution: (i) U open means that for each $y \in U$ there is a $\rho>0$ such that $B_{\rho}(y) \subset U . C$ closed means that C contains all its limit points. That is if $\left\{x_{k}\right\}$ is a convergent sequence in \mathbb{R}^{n} and $x_{k} \in C$ for each k, then $\lim x_{k} \in C$.
(ii) If U_{1}, U_{2} are open and $a \in U_{1} \cap U_{2}$ then $a \in U_{j}, j=1,2$, so by the openness of U_{j} there is $\rho_{j}>0$ such that $B_{\rho_{j}}(a) \subset U_{j}$. Let $\rho=\min \left(\rho_{1}, \rho_{2}\right)>0$, so $B_{\rho}(a) \subset B_{\rho_{j}}(a) \subset U_{j}$ for $j=1,2$, and thus $B_{\rho}(a) \subset U_{1} \cap U_{2}$, proving the openness of $U_{1} \cap U_{2}$.

This implies that if C_{1}, C_{2} are closed then $C_{1} \cup C_{2}$ is closed, since by the theorem in lecture, a set is closed iff its complement is open. Thus, $\left(C_{1} \cup C_{2}\right)^{c}=C_{1}^{c} \cap C_{2}^{c}$ shows that $\left(C_{1} \cup C_{2}\right)^{c}$ is open by what we have shown, and thus $C_{1} \cup C_{2}$ closed by the just stated theorem from lecture.
Alternatively, suppose $\left\{x_{k}\right\}$ is a sequence in $C_{1} \cup C_{2}$ converging to some $x \in \mathbb{R}^{n}$. Then for each $k, x_{k} \in C_{1}$ or $x_{k} \in C_{2}$, so with $K_{j}, j=1,2$, the set of k such that $x_{k} \in C_{j}, K_{1} \cup K_{2}=\mathbb{N}^{+}$, and thus one of K_{j} is infinite. Let i be such that K_{i} is infinite, and consider the subsequence $\left\{x_{k_{m}}\right\}_{m=1}^{\infty}$ of $\left\{x_{k}\right\}$ containing exactly the elements of $\left\{x_{k}\right\}$ with $k \in K_{i}$. Then $\left\{x_{k_{m}}\right\}_{m=1}^{\infty}$ is a sequence in C_{i}, converges to x (being a subsequence of sequence so converging), so by the closedness of $C_{i}, x \in C_{i}$, and thus $x \in C_{1} \cup C_{2}$, showing the claimed closedness.

1(b) (3 points) (i) For $U \subset \mathbb{R}^{n}$ open, give the definition of $f: U \rightarrow \mathbb{R}^{k}$ being continuous, and (ii) show that if $f: U \rightarrow V \subset \mathbb{R}^{k}$ is continuous, $U \subset \mathbb{R}^{n}, V \subset \mathbb{R}^{k}$ are open, $g: V \rightarrow \mathbb{R}^{m}$ is continuous then $g \circ f$, defined by $(g \circ f)(x)=g(f(x))$, is continuous.
Solution: (i) f is continuous if for all $a \in U$ and $\varepsilon>0$ there exists $\delta>0$ such that $\|x-a\|<\delta, x \in U$ implies $\|f(x)-f(a)\|<\varepsilon$.
(ii) Suppose f, g are as stated, and let $a \in U$, so $f(a) \in V$. Let $\varepsilon>0$. By the continuity of g there exists $\delta^{\prime}>0$ such that $\|y-f(a)\|<\delta^{\prime}, y \in V$ implies $\|g(y)-g(f(a))\|<\varepsilon$. But then by the definition of continuity of f, applied with δ^{\prime}, there exists $\delta>0$ such that $\|x-a\|<\delta, x \in U$ implies $\|f(x)-f(a)\|<\delta^{\prime}$. Thus, $\|x-a\|<\delta, x \in U$ implies $\|f(x)-f(a)\|<\delta^{\prime}$ which in turn implies $\|g(f(x))-g(f(a))\|<\varepsilon$, showing the claimed continuity.

2(a) (3 points.) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\frac{1}{7}\left(x^{7}+y^{7}\right)-64 x-y$. Find all the critical points (i.e. points where $\nabla_{\mathbb{R}^{2}} f=0$) of f, and discuss whether these points are local max/min for f. Justify all claims either with proof or by using a theorem from lecture.

Solution: $D f(x, y)=\left(x^{6}-64, y^{6}-1\right)$, so there are 4 critical points $(2,1),(-2,-1),(2,-1),(-2,1)$. The Hessian matrix at (x, y) is $\left(\begin{array}{cc}6 x^{5} & 0 \\ 0 & 6 y^{5}\end{array}\right)$ which gives positive definite quadratic form $6 \cdot 32 \lambda^{2}+6 \mu^{2}$ at $(2,1)$ and negative definite quadratic form $-6 \cdot 32 \lambda^{2}-6 \mu^{2}$ at $(-2,-1)$. Hence by the Second Derivative test from lecture (applicable because f is C^{2}, in fact C^{∞}), we see that f has a a local minimum at $(2,1)$ and a local maximum at $(-2,-1)$. At the point $(-2,1)$ the Hessian quadratic form is $-6 \cdot 32 \lambda^{2}+6 \mu^{2}$ which changes sign (has positive max on S^{1} and a negative min on S^{1}), and hence, as we proved in lecture/section, it is neither a local max nor a local min for f. (Concretely, $f(x, 1)$ has a local max at $-2, f(-2, y)$ has a local \min at $y=1$.) Similarly the point $(2,-1)$ is neither a local max nor a local min for f.

2(b) (3 points.) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=1+3 x^{2}+y^{6}+4(x-1)^{4}$. Show that f is bounded below and it attains its minimum.
Note: you do not need to find where the minimum is attained. Hint: show first that if $|x| \geq 3$ or $|y| \geq 2$ then $f(x, y) \geq 65$. What is $f(0,0)$?

Solution: Since all terms in the expression for f are squares of real numbers, we have $f(x, y) \geq 1$, so f is bounded below. Moreover, if $|x| \geq 3$ then $|x-1| \geq|x|-1 \geq 2$ (since $|x| \leq|x-1|+1$ by the triangle inequality) so $f(x, y) \geq 1+4 \cdot 16=65$ (using that all other terms are ≥ 0). If $|y| \geq 2$ then $f(x, y) \geq 1+64=65$ (again using that all other terms are ≥ 0). Thus, if $|x| \geq 3$ or $|y| \geq 2$ then $f(x, y) \geq 65$. On the other hand $R=\{(x, y):|x| \leq 3,|y| \leq 2\}$ is a closed and bounded subset of \mathbb{R}^{2}; it is bounded directly from the definition and closed because it is the intersection of the inverse images of the closed intervals $[-3,3]$ resp. $[-2,2]$ under the continuous maps $g(x, y)=x$ and $h(x, y)=y$, i.e. it is the intersection of two closed sets, thus closed. Correspondingly, by the theorem in lecture, $R=\{(x, y):|x| \leq 3,|y| \leq 2\}$ is compact, and as f is continuous, $\left.f\right|_{R}$ attains its minimum there, say at the point $\left(x_{0}, y_{0}\right)$. Note that as $f(0,0)=1+4=5$ and $(0,0) \in R$, the minimum value $f\left(x_{0}, y_{0}\right) \leq 5<65$. Since $f(x, y) \geq 65$ when $(x, y) \notin R$, we conclude that the minimum of f over \mathbb{R}^{2} (and not just R !) is indeed attained at (x_{0}, y_{0}).

3(a) (3 points) Consider the power series $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$. (i) Find its radius of convergence ρ. (ii) Let $f(x)=$ $\sum_{n=1}^{\infty} \frac{x^{n}}{n},|x|<\rho$. Show that $f^{\prime}(x)=\frac{1}{1-x}$ for $|x|<\rho$.

Solution: (i) First, recall that the series $\sum_{n=1}^{\infty} 1 / n$ diverges, and this is just the power series evaluated at 1 , so as a power series converges absolutely in $(-\rho, \rho)$, if ρ is its radius of convergence, we must have $\rho \leq 1$. On the other hand, $\left|x^{n} / n\right| \leq\left|x^{n}\right|$, and $\sum_{n=1}^{\infty}\left|x^{n}\right|$ converges for x with $|x|<1$ (this being a geometric series with common ratio $|x|$), by the comparison theorem for series with non-negative terms (i.e. the convergence theorem for increasing sequences which are bounded above), $\sum_{n=1}^{\infty}\left|x^{n} / n\right|$ converges for $|x|<1$, thus (absolute convergence implies convergence) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ converges for $|x|<1$. Hence the radius of convergence is ≥ 1, so in summary $\rho=1$.
(ii) By the theorem from class, a power series is infinitely differentiable within its radius of convergence with derivatives given by term-by-term differentiation. Hence, for $|x|<1, f^{\prime}(x)$ exists and is $f^{\prime}(x)=$ $\sum_{n=1}^{\infty} n \frac{x^{n-1}}{n}=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$, where the last equality comes from the sum of a convergent geometric series.

3(b) (3 points): (i) A sequence of functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ converges uniformly to a function $f:[a, b] \rightarrow \mathbb{R}$ if for all $\varepsilon>0$ there is $N \in \mathbb{N}^{+}$such that $n \geq N$ implies that $\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in[a, b]\right\}<\varepsilon$. Show that if f_{n} are continuous and $f_{n} \rightarrow f$ uniformly then f is continuous.
Hint: continuity of f at x requires given $x \in[a, b]$ and $\varepsilon>0$ finding $\delta>0$ with certain properties. Express $|f(y)-f(x)|$ in terms of $\left|f_{n}(y)-f_{n}(x)\right|$ and other expressions, and choose n well.
Solution: Suppose f_{n} continuous for all n, f_{n} converges to f uniformly. We need to show that f is continuous. So let $x \in[a, b]$ and $\varepsilon>0$. For any $y \in[a, b]$ and any n we have

$$
|f(y)-f(x)| \leq\left|f(y)-f_{n}(y)\right|+\left|f_{n}(y)-f_{n}(x)\right|+\left|f_{n}(x)-f(x)\right|
$$

by the triangle inequality. So first choose n such that the first and the last terms are guaranteed to be small, namely choose n such that $\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in[a, b]\right\}<\varepsilon / 3$, we can do this due to the uniform convergence of f_{n} to f. Then the first and last terms are $<\varepsilon / 3$. Now for this n, using the continuity of f_{n} at x, we get $\delta>0$ such that $|y-x|<\delta, y \in[a, b]$ implies $\left|f_{n}(y)-f_{n}(x)\right|<\varepsilon / 3$. Thus, $|y-x|<\delta, y \in[a, b]$ implies $|f(y)-f(x)|<\varepsilon$, which proves that f is continuous, completing the proof.

4(a) (3 points.) (i) Give the definition of a curve $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ having finite length, and for curves of finite length state the definition of the "length of a curve $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$." (ii) Show that if $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ has the property that there is a constant $K>0$ such that $\|\left\{(t)-\gamma\left(t^{\prime}\right) \| \leq K\left|t-t^{\prime}\right|\right.$ for $t, t^{\prime} \in[a, b]$ (one says γ is Lipschitz) then q has finite length.

Solution: (i) A curve (a continuous map) $\mathfrak{y}:[a, b] \rightarrow \mathbb{R}^{n}$ has finite length if the $\operatorname{set}\{\ell(\Upsilon, \mathcal{P}): \mathcal{P}$ partition of $[a, b]\}$ is bounded above, in which case $\ell(\Upsilon)$ is the supremum of this set. Here $\ell(\Upsilon, \mathcal{P})=\sum_{j=1}^{N}\left\|q\left(t_{j}\right)-\Upsilon\left(t_{j-1}\right)\right\|$, where \mathcal{P} is the partition $a=t_{0}<t_{1}<\ldots<t_{N}=b$.
(ii) Suppose γ is as above. For any partition \mathcal{P} of $[a, b]$, say $a=t_{0}<t_{1}<\ldots<t_{N}=b$, we have

$$
\ell(\imath, \mathcal{P})=\sum_{j=1}^{N}\left\|\nsim\left(t_{j}\right)-\Upsilon\left(t_{j-1}\right)\right\| \leq \sum_{j=1}^{N} K\left|t_{j}-t_{j-1}\right|=\sum_{j=1}^{N} K\left(t_{j}-t_{j-1}\right)=K\left(t_{N}-t_{0}\right)=K(b-a) .
$$

Thus $\{\ell(\Upsilon, \mathcal{P}): \mathcal{P}$ partition of $[a, b]\}$ is bounded above, with $K(b-a)$ being an upper bound, and correspondingly γ has finite length; in fact $\ell(\gamma) \leq K(b-a)$.

4(b) (4 points.) (i) Show directly (without using the corollary of the implicit function theorem that we have not proved) that the set $M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}+1\right\}$ is a 2-dimensional C^{1} submanifold of \mathbb{R}^{3}. (ii) Find the tangent space of M at the point $(1,1,1)$, and give a basis for it.
Note: in fact, M is a C^{∞} submanifold. You may use that $\sqrt{ }:(0, \infty) \rightarrow(0, \infty)$ is C^{∞}.
Solution: (i) It is often convenient to use the notation $\left(x_{1}, x_{2}, x_{3}\right)$ below. By the equivalent statement to the definition discussed in section, for each point $a \in M$, we need to find an open set $V \subset \mathbb{R}^{3}$ containing it, a permutation map P, an open subset U of \mathbb{R}^{2} and a C^{1} map g such that $V \cap M=P(G(U))$, where $G\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, g\left(x_{1}, x_{2}\right)\right)$. This is equivalent to saying that one of the coordinates x, y, z has to be expressed as a graph over an open subset U of the remaining coordinates' plane. We can write $M=$ $M_{1,+} \cup M_{1,-} \cup M_{2,+} \cup M_{2,-}=\cup_{j=1,2} \cup_{ \pm} M_{j, \pm}$, where $M_{j, \pm}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in M: \pm x_{j}>0\right\}$. Indeed, certainly $M_{j, \pm} \subset M$ for all j and \pm, and conversely if $\left(x_{1}, x_{2}, x_{3}\right) \in M$ then $x_{1}^{2}+x_{2}^{2} \geq 1$, so at least one of x_{1} and x_{2} is nonzero, thus either positive or negative, so the point is in one of $M_{j, \pm}$. Let $V_{j, \pm}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\right.$: $\left.\pm x_{j}>0\right\}$; this is open being the inverse image of the open set $(0, \infty)$ under the map $h_{j, \pm}\left(x_{1}, x_{2}, x_{3}\right)= \pm x_{j}$; then $M \cap V_{j, \pm}=M_{j, \pm}$. Thus, it suffices to show that $M_{j, \pm}$ is the image of a permuted graph map. For the sake of definiteness, consider $M_{1,+}$; all others are similar. Points in $M_{1,+}$ satisfy $x_{1}>0$ and $x_{1}^{2}+x_{2}^{2}=x_{3}^{2}+1$, thus $x_{2}^{2}<x_{3}^{2}+1$, i.e. $\left|x_{2}\right|<\sqrt{x_{3}^{2}+1}$, and $x_{1}=\sqrt{x_{3}^{2}+1-x_{2}^{2}}$, with all square roots being the non-negative square roots of non-negative reals. Now the set $U_{1,+}=\left\{\left(x_{2}, x_{3}\right): x_{2}^{2}<x_{3}^{2}+1\right\} \subset \mathbb{R}^{2}$ is open, being the inverse image of $(0, \infty)$ under the continuous map $h\left(x_{2}, x_{3}\right)=x_{3}^{2}+1-x_{2}^{2}$, and $M_{1,+}$ is the permuted graph of the C^{∞} function $g_{1,+}\left(x_{2}, x_{3}\right)=\sqrt{x_{3}^{2}+1-x_{2}^{2}}$ over $U_{1,+}$, with the C^{∞} statement due to being the composition of C^{∞} functions, $\sqrt{ }$ defined over $(0, \infty)$, and a polynomial. This, together with completely analogous considerations for the other $M_{j, \pm}$ proves that M is a 2 -dimensional C^{∞} submanifold of \mathbb{R}^{3}.
(ii) Notice that $(1,1,1) \in M_{1,+}$, so by the theorem in lecture the tangent space to M at $(1,1,1)$ is the span of the partial derivatives of the graph map, with the latter being linearly independent and thus forming a basis. Concretely, the permuted graph map is $\tilde{G}\left(x_{2}, x_{3}\right)=\left(\sqrt{x_{3}^{2}+1-x_{2}^{2}}, x_{2}, x_{3}\right),\left(x_{2}, x_{3}\right) \in U_{1,+}$, so a basis of the tangent space at $\tilde{G}\left(x_{2}, x_{3}\right)$ is given by

$$
\left(-x_{2} / \sqrt{x_{3}^{2}+1-x_{2}^{2}}, 1,0\right)^{\mathrm{T}},\left(x_{3} / \sqrt{x_{3}^{2}+1-x_{2}^{2}}, 0,1\right)^{\mathrm{T}}
$$

i.e. at $(1,1,1)$ (corresponding to $\tilde{G}(1,1))$ by $(-1,1,0)^{\mathrm{T}},(1,0,1)^{\mathrm{T}}$. Note that these vectors are indeed orthogonal to the gradient of $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-1$, which is $\nabla f=\left(2 x_{1}, 2 x_{2},-2 x_{3}\right)^{\mathrm{T}}$, i.e. is $(1,1,-1)^{\mathrm{T}}$ at ($1,1,1$), thus their span (being 2 -dimensional) is exactly the orthocomplement of the span of ∇f.

