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1(a) (3 points.) (i) Give the definition of “U is open” and “C is closed” as applied to subsets U,C ⊂ Rn,
and (ii) give the proof that if C1, C2 are closed then C1 ∪ C2 is closed, and if U1, U2 are open then U1 ∩ U2

is open.

Note: In (ii), at least one of the two statements should be shown directly from the definition. You may either show the other
directly, or by using an appropriate theorem.

Solution: (i) U open means that for each y ∈ U there is a ρ > 0 such that Bρ(y) ⊂ U . C closed means
that C contains all its limit points. That is if {xk} is a convergent sequence in Rn and xk ∈ C for each k,
then limxk ∈ C.

(ii) If U1, U2 are open and a ∈ U1 ∩ U2 then a ∈ Uj , j = 1, 2, so by the openness of Uj there is ρj > 0 such
that Bρj (a) ⊂ Uj . Let ρ = min(ρ1, ρ2) > 0, so Bρ(a) ⊂ Bρj (a) ⊂ Uj for j = 1, 2, and thus Bρ(a) ⊂ U1 ∩ U2,
proving the openness of U1 ∩ U2.

This implies that if C1, C2 are closed then C1 ∪ C2 is closed, since by the theorem in lecture, a set is closed
iff its complement is open. Thus, (C1 ∪ C2)

c = Cc1 ∩ Cc2 shows that (C1 ∪ C2)
c is open by what we have

shown, and thus C1 ∪ C2 closed by the just stated theorem from lecture.

Alternatively, suppose {xk} is a sequence in C1 ∪ C2 converging to some x ∈ Rn. Then for each k, xk ∈ C1

or xk ∈ C2, so with Kj , j = 1, 2, the set of k such that xk ∈ Cj , K1 ∪ K2 = N+, and thus one of Kj is
infinite. Let i be such that Ki is infinite, and consider the subsequence {xkm}∞m=1 of {xk} containing exactly
the elements of {xk} with k ∈ Ki. Then {xkm}∞m=1 is a sequence in Ci, converges to x (being a subsequence
of sequence so converging), so by the closedness of Ci, x ∈ Ci, and thus x ∈ C1 ∪ C2, showing the claimed
closedness.

1(b) (3 points) (i) For U ⊂ Rn open, give the definition of f : U → Rk being continuous, and (ii) show
that if f : U → V ⊂ Rk is continuous, U ⊂ Rn, V ⊂ Rk are open, g : V → Rm is continuous then g ◦ f ,
defined by (g ◦ f)(x) = g(f(x)), is continuous.

Solution: (i) f is continuous if for all a ∈ U and ε > 0 there exists δ > 0 such that ‖x − a‖ < δ, x ∈ U
implies ‖f(x)− f(a)‖ < ε.

(ii) Suppose f, g are as stated, and let a ∈ U , so f(a) ∈ V . Let ε > 0. By the continuity of g there exists
δ ′ > 0 such that ‖y−f(a)‖ < δ ′, y ∈ V implies ‖g(y)−g(f(a))‖ < ε. But then by the definition of continuity
of f , applied with δ ′, there exists δ > 0 such that ‖x − a‖ < δ, x ∈ U implies ‖f(x) − f(a)‖ < δ ′. Thus,
‖x− a‖ < δ, x ∈ U implies ‖f(x)− f(a)‖ < δ ′ which in turn implies ‖g(f(x))− g(f(a))‖ < ε, showing the
claimed continuity.
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2(a) (3 points.) Let f : R2 → R be defined by f(x, y) = 1
7(x7 + y7)− 64x− y. Find all the critical points

(i.e. points where ∇R2f = 0) of f , and discuss whether these points are local max/min for f . Justify all
claims either with proof or by using a theorem from lecture.

Solution: Df(x, y) = (x6 − 64, y6 − 1), so there are 4 critical points (2, 1), (−2,−1), (2,−1), (−2, 1). The

Hessian matrix at (x, y) is

(
6x5 0
0 6y5

)
which gives positive definite quadratic form 6 · 32λ2 + 6µ2 at (2, 1)

and negative definite quadratic form −6 · 32λ2− 6µ2 at (−2,−1). Hence by the Second Derivative test from
lecture (applicable because f is C2, in fact C∞), we see that f has a a local minimum at (2, 1) and a local
maximum at (−2,−1). At the point (−2, 1) the Hessian quadratic form is −6 · 32λ2 + 6µ2 which changes
sign (has positive max on S1 and a negative min on S1), and hence, as we proved in lecture/section, it is
neither a local max nor a local min for f . (Concretely, f(x, 1) has a local max at −2, f(−2, y) has a local
min at y = 1.) Similarly the point (2,−1) is neither a local max nor a local min for f .

2(b) (3 points.) Let f : R2 → R be defined by f(x, y) = 1 + 3x2 + y6 + 4(x− 1)4. Show that f is bounded
below and it attains its minimum.

Note: you do not need to find where the minimum is attained. Hint: show first that if |x| ≥ 3 or |y| ≥ 2 then f(x, y) ≥ 65.
What is f(0, 0)?

Solution: Since all terms in the expression for f are squares of real numbers, we have f(x, y) ≥ 1, so f is
bounded below. Moreover, if |x| ≥ 3 then |x−1| ≥ |x|−1 ≥ 2 (since |x| ≤ |x−1|+1 by the triangle inequality)
so f(x, y) ≥ 1 + 4 · 16 = 65 (using that all other terms are ≥ 0). If |y| ≥ 2 then f(x, y) ≥ 1 + 64 = 65
(again using that all other terms are ≥ 0). Thus, if |x| ≥ 3 or |y| ≥ 2 then f(x, y) ≥ 65. On the other
hand R = {(x, y) : |x| ≤ 3, |y| ≤ 2} is a closed and bounded subset of R2; it is bounded directly from the
definition and closed because it is the intersection of the inverse images of the closed intervals [−3, 3] resp.
[−2, 2] under the continuous maps g(x, y) = x and h(x, y) = y, i.e. it is the intersection of two closed sets,
thus closed. Correspondingly, by the theorem in lecture, R = {(x, y) : |x| ≤ 3, |y| ≤ 2} is compact, and as f
is continuous, f |R attains its minimum there, say at the point (x0, y0). Note that as f(0, 0) = 1 + 4 = 5 and
(0, 0) ∈ R, the minimum value f(x0, y0) ≤ 5 < 65. Since f(x, y) ≥ 65 when (x, y) /∈ R, we conclude that the
minimum of f over R2 (and not just R!) is indeed attained at (x0, y0).
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3(a) (3 points) Consider the power series
∑∞

n=1
xn

n . (i) Find its radius of convergence ρ. (ii) Let f(x) =∑∞
n=1

xn

n , |x| < ρ. Show that f ′(x) = 1
1−x for |x| < ρ.

Solution: (i) First, recall that the series
∑∞

n=1 1/n diverges, and this is just the power series evaluated
at 1, so as a power series converges absolutely in (−ρ, ρ), if ρ is its radius of convergence, we must have
ρ ≤ 1. On the other hand, |xn/n| ≤ |xn|, and

∑∞
n=1 |xn| converges for x with |x| < 1 (this being a

geometric series with common ratio |x|), by the comparison theorem for series with non-negative terms (i.e.
the convergence theorem for increasing sequences which are bounded above),

∑∞
n=1 |xn/n| converges for

|x| < 1, thus (absolute convergence implies convergence)
∑∞

n=1
xn

n converges for |x| < 1. Hence the radius
of convergence is ≥ 1, so in summary ρ = 1.

(ii) By the theorem from class, a power series is infinitely differentiable within its radius of convergence
with derivatives given by term-by-term differentiation. Hence, for |x| < 1, f ′(x) exists and is f ′(x) =∑∞

n=1 n
xn−1

n =
∑∞

n=0 x
n = 1

1−x , where the last equality comes from the sum of a convergent geometric
series.

3(b) (3 points): (i) A sequence of functions fn : [a, b]→ R converges uniformly to a function f : [a, b]→ R
if for all ε > 0 there is N ∈ N+ such that n ≥ N implies that sup{|fn(x) − f(x)| : x ∈ [a, b]} < ε. Show
that if fn are continuous and fn → f uniformly then f is continuous.

Hint: continuity of f at x requires given x ∈ [a, b] and ε > 0 finding δ > 0 with certain properties. Express |f(y) − f(x)| in
terms of |fn(y)− fn(x)| and other expressions, and choose n well.

Solution: Suppose fn continuous for all n, fn converges to f uniformly. We need to show that f is
continuous. So let x ∈ [a, b] and ε > 0. For any y ∈ [a, b] and any n we have

|f(y)− f(x)| ≤ |f(y)− fn(y)|+ |fn(y)− fn(x)|+ |fn(x)− f(x)|

by the triangle inequality. So first choose n such that the first and the last terms are guaranteed to be
small, namely choose n such that sup{|fn(x)− f(x)| : x ∈ [a, b]} < ε/3, we can do this due to the uniform
convergence of fn to f . Then the first and last terms are < ε/3. Now for this n, using the continuity of fn
at x, we get δ > 0 such that |y − x| < δ, y ∈ [a, b] implies |fn(y)− fn(x)| < ε/3. Thus, |y − x| < δ, y ∈ [a, b]
implies |f(y)− f(x)| < ε, which proves that f is continuous, completing the proof.
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4(a) (3 points.) (i) Give the definition of a curve γ : [a, b] → Rn having finite length, and for curves of
finite length state the definition of the “length of a curve γ : [a, b] → Rn.” (ii) Show that if γ : [a, b] → Rn
has the property that there is a constant K > 0 such that ‖γ(t)− γ(t ′)‖ ≤ K|t− t ′| for t, t ′ ∈ [a, b] (one says
γ is Lipschitz) then γ has finite length.

Solution: (i) A curve (a continuous map) γ : [a, b]→ Rn has finite length if the set {`(γ,P) : P partition of [a, b]}
is bounded above, in which case `(γ) is the supremum of this set. Here `(γ,P) =

∑N
j=1 ‖γ(tj) − γ(tj−1)‖,

where P is the partition a = t0 < t1 < . . . < tN = b.

(ii) Suppose γ is as above. For any partition P of [a, b], say a = t0 < t1 < . . . < tN = b, we have

`(γ,P) =
N∑
j=1

‖γ(tj)− γ(tj−1)‖ ≤
N∑
j=1

K|tj − tj−1| =
N∑
j=1

K(tj − tj−1) = K(tN − t0) = K(b− a).

Thus {`(γ,P) : P partition of [a, b]} is bounded above, with K(b − a) being an upper bound, and corre-
spondingly γ has finite length; in fact `(γ) ≤ K(b− a).

4(b) (4 points.) (i) Show directly (without using the corollary of the implicit function theorem that we
have not proved) that the set M = {(x, y, z) ∈ R3 : x2 + y2 = z2 + 1} is a 2-dimensional C1 submanifold of
R3. (ii) Find the tangent space of M at the point (1, 1, 1), and give a basis for it.

Note: in fact, M is a C∞ submanifold. You may use that
√

: (0,∞)→ (0,∞) is C∞.

Solution: (i) It is often convenient to use the notation (x1, x2, x3) below. By the equivalent statement to
the definition discussed in section, for each point a ∈ M , we need to find an open set V ⊂ R3 containing
it, a permutation map P , an open subset U of R2 and a C1 map g such that V ∩M = P (G(U)), where
G(x1, x2) = (x1, x2, g(x1, x2)). This is equivalent to saying that one of the coordinates x, y, z has to be
expressed as a graph over an open subset U of the remaining coordinates’ plane. We can write M =
M1,+∪M1,−∪M2,+∪M2,− = ∪j=1,2∪±Mj,±, where Mj,± = {(x1, x2, x3) ∈M : ±xj > 0}. Indeed, certainly
Mj,± ⊂M for all j and ±, and conversely if (x1, x2, x3) ∈M then x21 + x22 ≥ 1, so at least one of x1 and x2
is nonzero, thus either positive or negative, so the point is in one of Mj,±. Let Vj,± = {(x1, x2, x3) ∈ R3 :
±xj > 0}; this is open being the inverse image of the open set (0,∞) under the map hj,±(x1, x2, x3) = ±xj ;
then M ∩ Vj,± = Mj,±. Thus, it suffices to show that Mj,± is the image of a permuted graph map. For the
sake of definiteness, consider M1,+; all others are similar. Points in M1,+ satisfy x1 > 0 and x21 +x22 = x23 +1,
thus x22 < x23 + 1, i.e. |x2| <

√
x23 + 1, and x1 =

√
x23 + 1− x22, with all square roots being the non-negative

square roots of non-negative reals. Now the set U1,+ = {(x2, x3) : x22 < x23 + 1} ⊂ R2 is open, being
the inverse image of (0,∞) under the continuous map h(x2, x3) = x23 + 1 − x22, and M1,+ is the permuted
graph of the C∞ function g1,+(x2, x3) =

√
x23 + 1− x22 over U1,+, with the C∞ statement due to being the

composition of C∞ functions,
√

defined over (0,∞), and a polynomial. This, together with completely

analogous considerations for the other Mj,± proves that M is a 2-dimensional C∞ submanifold of R3.

(ii) Notice that (1, 1, 1) ∈M1,+, so by the theorem in lecture the tangent space to M at (1, 1, 1) is the span
of the partial derivatives of the graph map, with the latter being linearly independent and thus forming a
basis. Concretely, the permuted graph map is G̃(x2, x3) = (

√
x23 + 1− x22, x2, x3), (x2, x3) ∈ U1,+, so a basis

of the tangent space at G̃(x2, x3) is given by

(−x2/
√
x23 + 1− x22, 1, 0)T, (x3/

√
x23 + 1− x22, 0, 1)T,

i.e. at (1, 1, 1) (corresponding to G̃(1, 1)) by (−1, 1, 0)T, (1, 0, 1)T. Note that these vectors are indeed orthog-
onal to the gradient of f(x1, x2, x3) = x21 + x22 − x23 − 1, which is ∇f = (2x1, 2x2,−2x3)

T, i.e. is (1, 1,−1)T

at (1, 1, 1), thus their span (being 2-dimensional) is exactly the orthocomplement of the span of ∇f .
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