Mathematics Department Stanford University Math 51H Second Mid-Term, November 11, 2014

Solutions

Unless otherwise indicated, you can use results covered in lecture, provided they are clearly stated.

If necessary, continue solutions on backs of pages Note: work sheets are provided for your convenience, but will not be graded

Q.1	
Q.2	
Q.3	
Q.4	
T/25	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

1(a) (3 points.) (i) Give the definition of "U is open" and "C is closed" as applied to subsets $U, C \subset \mathbb{R}^n$, and (ii) give the proof that $\mathbb{R}^n \setminus C$ open implies C closed.

Note: In lecture we proved $\mathbb{R}^n \setminus C$ is open $\iff C$ is closed; in (ii) you are only being asked to give the proof of " \Rightarrow ."

Solution: U open means that for each $y \in U$ there is a $\rho > 0$ such that $B_{\rho}(y) \subset U$. C closed means that C contains all its limit points. That is if $\{\underline{x}_k\}$ is a convergent sequence in \mathbb{R}^n and $\underline{x}_k \in C$ for each k, then $\lim \underline{x}_k \in C$.

Suppose $\{\underline{x}_k\}$ is a convergent sequence, $\underline{x}_k \in C$ for all $k, \underline{x} = \lim \underline{x}_k$, and $\mathbb{R}^n \setminus C$ is open. Suppose for the sake of contradiction that $\underline{x} \notin C$, i.e. $\underline{x} \in \mathbb{R}^n \setminus C$. Since the latter set is open, there exists $\delta > 0$ such that $B_{\delta}(\underline{x}) \subset \mathbb{R}^n \setminus C$. By the definition of convergence, there exists N such that $k \ge N$ implies $\|\underline{x}_k - \underline{x}\| < \delta$. Thus, $\underline{x}_N \in B_{\delta}(\underline{x}) \subset \mathbb{R}^n \setminus C$, contradicting $\underline{x}_N \in C$. Thus proves that $\underline{x} \in C$, i.e. C contains all of its limit points.

1(b) (4 points) (i) Give the definition of $f : \mathbb{R}^n \to \mathbb{R}^k$ being continuous, and (ii) show that if $f : \mathbb{R}^n \to \mathbb{R}^k$ is continuous and $U \subset \mathbb{R}^k$ is open, $C \subset \mathbb{R}^k$ is closed then $f^{-1}(U) = \{x : f(x) \in U\}$ is open and $f^{-1}(C) = \{x : f(x) \in C\}$ is closed.

Solution: (i) f is continuous if for all $\underline{a} \in \mathbb{R}^n$ and $\varepsilon > 0$ there exists $\delta > 0$ such that $||\underline{x} - \underline{a}|| < \delta$ implies $||f(\underline{x}) - f(\underline{a})|| < \varepsilon$.

(ii) Either of the two conclusions follows from the other as e.g. $\mathbb{R}^n \setminus f^{-1}(U) = f^{-1}(\mathbb{R}^k \setminus U)$, i.e. the complement of $f^{-1}(U)$ is $f^{-1}(C)$ with $C = \mathbb{R}^k \setminus U$, so if the 'closed' claim is shown, the 'open' one follows as a set is open if and only if its complement is closed. However, we proceed directly instead. To see the openness claim, suppose U is open, and $\underline{a} \in f^{-1}(U)$, i.e. $f(\underline{a}) \in U$. As U is open, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(f(\underline{a})) \subset U$, i.e. if $y \in \mathbb{R}^k$ with $||y - f(\underline{a})|| < \varepsilon$ then $y \in U$. By the definition of continuity there exists $\delta > 0$ such that $||\underline{x} - \underline{a}|| < \delta$ implies $||f(\underline{x}) - f(\underline{a})|| < \varepsilon$, so if $\underline{x} \in B_{\delta}(\underline{a})$ then $||f(\underline{x}) - f(\underline{a})|| < \varepsilon$ and so $f(\underline{x}) \in U$, i.e. $\underline{x} \in f^{-1}(U)$. This shows that $B_{\delta}(\underline{a}) \subset f^{-1}(U)$, so $f^{-1}(U)$ is open. To see the closedness claim, suppose that C is closed and $\{\underline{x}_j\}$ is a sequence in $f^{-1}(C)$ (i.e. $f(\underline{x}_j) \in C$) converging to some $\underline{x} \in \mathbb{R}^n$. Since f is continuous, thus sequentially continuous, $\lim f(\underline{x}_j) = f(\underline{x})$, so $\{f(\underline{x}_j)\}$ is a convergent sequence of points in C, with limit $f(\underline{x})$. Since C is closed, $f(\underline{x}) \in C$, so $\underline{x} \in f^{-1}(C)$. Thus, $f^{-1}(C)$ contains its limit points, so it is closed. **2(a)** (3 points.) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \frac{1}{5}(x^5 + y^5) + \frac{1}{3}x^3 - 2x - y$. Find all the critical points (i.e. points where $\nabla_{\mathbb{R}^n} f = 0$) of f, and discuss whether these points are local max/min for f. Justify all claims either with proof or by using a theorem from lecture.

Solution: $Df(x,y) = (x^4 + x^2 - 2, y^4 - 1) = ((x^2 - 1)(x^2 + 2), (y^2 + 1)(y^2 - 1)) = ((x - 1)(x + 1)(x^2 + 2), (y - 1)(y + 1)(y^2 + 1))$, so there are 4 critical points (1, 1), (-1, -1), (1, -1), (-1, 1). The Hessian matrix at (x, y) is $\begin{pmatrix} 4x^3 + 2x & 0 \\ 0 & 4y^3 \end{pmatrix}$ which gives positive definite quadratic form $6\lambda^2 + 4\mu^2$ at (1, 1) and negative definite quadratic form $-6\lambda^2 - 4\mu^2$ at (-1, -1). Hence by the Second Derivative test from lecture (applicable because f is C^2 , in fact C^{∞}), we see that f has a local minimum at (1, 1) and a local maximum at (-1, -1). At the point (-1, 1) the Hessian quadratic form is $-6\lambda^2 + 4\mu^2$ which changes sign (has positive max on S^1 and a negative min on S^1), and hence, as we proved in lecture/section, it is neither a local max nor a local min for f. Similarly the point (1, -1) is neither a local min for f.

2(b) (2 points.) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \sqrt{1 + x^2 + y^2}$. Find the tangent space of the graph of f at $(2, 2, 3) \in \mathbb{R}^3$.

Solution: From lecture/homework the tangent space is $\operatorname{Span}\{D_1G(\underline{0}), D_2G(\underline{0})\}$, where G is the graph map $G(x,y) = (x, y, \sqrt{1+x^2+y^2})^{\mathrm{T}}$. Thus $D_1G(x,y) = (1, 0, \frac{x}{\sqrt{1+x^2+y^2}})^{\mathrm{T}}$ and $D_2G(x,y) = (0, 1, \frac{y}{\sqrt{1+x^2+y^2}})^{\mathrm{T}}$, and hence the tangent space is $\operatorname{Span}\{(1, 0, \frac{2}{3})^{\mathrm{T}}, (0, 1, \frac{2}{3})^{\mathrm{T}}\}$.

3(a) (3 points): (i) State the definition of " $\sum_{n=0}^{\infty} a_n$ converges," resp. " $\sum_{n=0}^{\infty} a_n$ converges absolutely," and (ii) show that if $\sum_{n=0}^{\infty} a_n c^n$ converges then $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely for $x \in \mathbb{R}$ with |x| < |c|.

Solution: (i) $\sum_{n=1}^{\infty} a_n$ convergent means that the sequence of partial sums $\{s_n\}_{n=1,2,\ldots}$ is convergent, and in this case we say $s = \lim s_n$ is "the sum of the series" (and we write $s = \sum_{n=1}^{\infty} a_n$). $\sum_{n=1}^{\infty} a_n$ absolutely convergent means that $\sum_{n=1}^{\infty} |a_n|$ is convergent. (ii) We may assume $c \neq 0$ since otherwise the conclusion is empty. Suppose $\sum_{n=0}^{\infty} a_n c^n$ converges. Since for any convergent series the terms converge to 0, $\lim a_n c^n = 0$, so as every convergent sequence is bounded, there exists M > 0 such that $|a_n c^n| \leq M$ for all n. Then $|a_n x^n| = |a_n c^n| |x/c|^n \leq M |x/c|^n$. Now, the series $\sum_{n=0}^{\infty} M |x/c|^n$ is a convergent geometric series since |x/c| < 1, so its partial sums are bounded (as they converge to the actual sum of the series). Correspondingly, the partial sums of $\sum_{n=0}^{\infty} |a_n x^n|$ are also bounded: $\sum_{n=0}^{N} |a_n x^n| \leq \sum_{n=0}^{N} M |x/c|^n$. Since a series with non-negative terms converges if and only if its partial sums are bounded, $\sum_{n=0}^{\infty} |a_n x^n|$ converges, i.e. $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely.

3(b) (3 points) If $\cos x$, $\sin x$ are defined by $\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$ and $\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$, prove, for all $x \in \mathbb{R}$, $\frac{d}{dx} \cos x = -\sin x$, $\frac{d}{dx} \sin x = \cos x$, and $\sin^2 x + \cos^2 x = 1$.

Solution: First note that the series are convergent for all $x \in \mathbb{R}$ (e.g. by the ratio test), and hence by a theorem of lecture the series give C^1 functions which can be differentiated simply by taking the termwise differentiated series. Thus

$$\frac{d}{dx}\cos x = \sum_{k=1}^{\infty} (-1)^k 2kx^{2k-1}/(2k)!$$

= $-\sum_{k=1}^{\infty} (-1)^{k-1} x^{2k-1}/(2k-1)! = -\sum_{k=0}^{\infty} (-1)^k x^{2k+1}/(2k+1)! = \sin x$
 $\frac{d}{dx}\sin x = \sum_{k=0}^{\infty} (-1)^k (2k+1)x^{2k}/(2k+1)!$
= $\sum_{k=0}^{\infty} (-1)^k x^{2k}/(2k)! = \cos x.$

and then $\frac{d}{dx}(\sin^2 x + \cos^2 x) = 2\sin x \cos x - 2\cos x \sin x = 0$, so that $\sin^2 x + \cos^2 x$ is a constant C on all of \mathbb{R} . However $\cos 0 = 1$ and $\sin 0 = 0$, so C = 1.

4(a) (4 points.) (i) Give the definition of a curve $\gamma : [a, b] \to \mathbb{R}^n$ having finite length, and for curves of finite length state the definition of the "length of a curve $\gamma : [a, b] \to \mathbb{R}^n$." (ii) Show that if $\gamma : [a, b] \to \mathbb{R}^n$ has the property that $\gamma|_{(a,b]}$ is C^1 and $\lim_{c\to a} \int_c^b ||\gamma'(t)|| dt$ exists then γ has finite length, equal to $\lim_{c\to a} \int_c^b ||\gamma'(t)|| dt$.

Hint: Any curve is continuous by definition. Use this, and the definition of length together with the theorem from lecture for C^1 curves.

Solution: (i) A curve (a continuous map) $\gamma : [a, b] \to \mathbb{R}^n$ has finite length if the set $\{\ell(\gamma, \mathcal{P}) : \mathcal{P} \text{ partition of } [a, b]\}$ is bounded above, in which case $\ell(\gamma)$ is the supremum of this set. Here $\ell(\gamma, \mathcal{P}) = \sum_{j=1}^{N} \|\gamma(t_j) - \gamma(t_{j-1})\|$, where \mathcal{P} is the partition $a = t_0 < t_1 < \ldots < t_N = b$.

(ii) For c > a, $\gamma|_{[c,b]}$ is C^1 by assumption, so by the theorem from class, it is finite length with $\ell(\gamma|_{[c,b]}) = \int_c^b ||\gamma'(t)|| dt$. In particular, for any partition \mathcal{P}' of [c,b], $\ell(\gamma|_{[c,b]}, \mathcal{P}') \leq \int_c^b ||\gamma'(t)|| dt$. Now, if \mathcal{P} is any partition $a = t_0 < t_1 < \ldots < t_N = b$ of [a,b], let $c = t_1$, so $c = t_1 < t_2 < \ldots < t_N = b$ is a partition \mathcal{P}' of [c,b], and so $\ell(\gamma,\mathcal{P}) = ||\gamma(c) - \gamma(a)|| + \ell(\gamma,\mathcal{P}') \leq ||\gamma(c) - \gamma(a)|| + \int_c^b ||\gamma'(t)|| dt$. Since γ is continuous on [a,b], so is the function $f(t) = ||\gamma(t) - \gamma(a)||$ (being the composite of continuous functions); since [a,b] is compact, f is bounded, say $f(t) \leq M$ for all $t \in [a,b]$. Moreover, as $S(\tau) = \int_{\tau}^b ||\gamma'(t)||$, dt is a decreasing function of τ (as the integrand is non-negative),

$$\ell = \lim_{\tau \to a} S(c),$$

which exists by assumption, is actually $\sup\{S(\tau): \tau \in (a,b]\}$, so is in particular $\geq \int_{c}^{b} \|\gamma'(t)\| dt$. Thus, $\ell(\gamma, \mathcal{P}) \leq M + \ell$, proving that the length of the polygonal approximations is bounded above by $M + \ell$, and thus γ has finite length. In particular, for any $c \in (a,b)$, $\ell(\gamma) = \ell(\gamma|_{[a,c]}) + \ell(\gamma|_{[c,b]})$ as shown on the problem set, so $\ell(\gamma)$ is an upper bound for $\{\ell(\gamma|_{[c,b]}): c \in (a,b]\}$, and thus $\ell(\gamma) \geq \ell$. Now, by the continuity of γ , given $\varepsilon > 0$ there is $\delta > 0$ such that $t < a + \delta$ implies $\|\gamma(t) - \gamma(a)\| < \varepsilon$. If \mathcal{P} is a partition of [a,b] as above, add a new division point $\sigma \in (t_0,\min(t_1,\delta))$ to obtain a new partition \mathcal{Q} . Then

$$\ell(\gamma, \mathcal{P}) = \|\gamma(t_1) - \gamma(t_0)\| + \ell(\gamma|_{[t_1, b]}, \mathcal{P}') \le \|\gamma(\sigma) - \gamma(t_0)\| + \|\gamma(t_1) - \gamma(\sigma)\| + \ell(\gamma|_{[t_1, b]}, \mathcal{P}') = \ell(\gamma, \mathcal{Q}),$$

and

$$\ell(\gamma, \mathcal{Q}) = \|\gamma(\sigma) - \gamma(t_0)\| + \ell(\gamma|_{[\sigma,b]}, \mathcal{Q}') \le \varepsilon + \ell(\gamma|_{[\sigma,b]}) \le \varepsilon + \ell.$$

So for any $\varepsilon > 0$, $\ell + \varepsilon$ is an upper bound for the lengths of the polygonal approximations to γ , so $\ell(\gamma) \leq \ell + \varepsilon$, i.e. as $\varepsilon > 0$ is arbitrary, $\ell(\gamma) \leq \ell$. Since the opposite inequality is already shown, $\ell(\gamma) = \ell$.

Note: One can streamline the argument somewhat to show the bound $\ell(\gamma, \mathcal{P}) \leq \ell + \varepsilon$ directly, without showing $\ell(\gamma, \mathcal{P}) \leq \ell + M$ first.

4(b) (3 points.) (i) Show that the map $\gamma : [0, 1] \to \mathbb{R}^2$ given by $\gamma(0) = 0, \gamma(t) = (t \cos \log t, t \sin \log t)$ is continuous, C^1 on (0, 1], but not on [0, 1], and (ii) show that γ has finite length, and compute it. Note: γ is called a logarithmic spiral. You may use the results of 4(a) even if you have not proved them.

Solution: (i) The given map is C^1 in (0, 1] by the chain rule, and continuous at 0 since sin, cos are bounded by 1; in fact, $0 \le t < \varepsilon$ implies $\|\gamma(t)\| = t\sqrt{\cos^2 \log t + \sin^2 \log t} = t < \varepsilon$. On the other hand, it is not C^1 since for t > 0 $\gamma'(t) = (\cos \log t - \sin \log t, \sin \log t + \cos \log t)$, and $\lim_{t\to 0} \gamma'(t)$ does not exist as is shown by taking $t_n = e^{-2n\pi}$ with $\gamma'(t_n) = (1, 1)$ while for $t'_n = e^{-2n\pi + \pi}$, $\gamma'(t'_n) = (-1, -1)$, with $\lim t_n \to 0$, $\lim t'_n = 0$, while if the limit existed, it would have to be equal

to both of the unequal limits $\lim \gamma'(t_n)$ and $\lim \gamma'(t'_n)$. Thus, the derivative cannot be continuous at 0, so γ is not C^1 . (A different way to argue is that γ is not even differentiable at 0: one needs to evaluate the difference quotients $\gamma(t)/t$, t > 0, and let $t \to 0$; since $\gamma(t)/t = (\cos \log t, \sin \log t)$, arguing as above shows that the limit does not exists.)

(ii) By part (a), it suffices to check that $\lim_{c\to 0} \int_c^1 \|\gamma'(t)\| dt$ exists. But for t > 0,

$$\|\gamma'(t)\| = \sqrt{(\cos\log t - \sin\log t)^2 + (\sin\log t + \cos\log t)^2} \\ = \sqrt{2\cos^2\log t + 2\sin^2\log t} = \sqrt{2}$$

so $\ell(\gamma|_{[c,1]}) = \sqrt{2}(1-c)$, and thus $\lim_{c\to 0} \ell(\gamma|_{[c,1]}) = \sqrt{2}$, yielding that the curve has finite length, which is in fact $\sqrt{2}$.