Mathematics Department Stanford University Math 51H Second Mid-Term, November 11, 2014

Solutions

Unless otherwise indicated, you can use results covered in lecture, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded

Q. 1	
Q.2	
Q.3	
Q.4	
T $/ 25$	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed) \qquad
$\mathbf{1 (a)}$ (3 points.) (i) Give the definition of " U is open" and " C is closed" as applied to subsets $U, C \subset \mathbb{R}^{n}$, and (ii) give the proof that $\mathbb{R}^{n} \backslash C$ open implies C closed.

Note: In lecture we proved $\mathbb{R}^{n} \backslash C$ is open $\Longleftrightarrow C$ is closed; in (ii) you are only being asked to give the proof of " \Rightarrow."

Solution: U open means that for each $y \in U$ there is a $\rho>0$ such that $B_{\rho}(y) \subset U . C$ closed means that C contains all its limit points. That is if $\left\{\underline{x}_{k}\right\}$ is a convergent sequence in \mathbb{R}^{n} and $\underline{x}_{k} \in C$ for each k, then $\lim \underline{x}_{k} \in C$.

Suppose $\left\{\underline{x}_{k}\right\}$ is a convergent sequence, $\underline{x}_{k} \in C$ for all $k, \underline{x}=\lim \underline{x}_{k}$, and $\mathbb{R}^{n} \backslash C$ is open. Suppose for the sake of contradiction that $\underline{x} \notin C$, i.e. $\underline{x} \in \mathbb{R}^{n} \backslash C$. Since the latter set is open, there exists $\delta>0$ such that $B_{\delta}(\underline{x}) \subset \mathbb{R}^{n} \backslash C$. By the definition of convergence, there exists N such that $k \geq N$ implies $\left\|\underline{x}_{k}-\underline{x}\right\|<\delta$. Thus, $\underline{x}_{N} \in B_{\delta}(\underline{x}) \subset \mathbb{R}^{n} \backslash C$, contradicting $\underline{x}_{N} \in C$. Thus proves that $\underline{x} \in C$, i.e. C contains all of its limit points.
(b) (4 points) (i) Give the definition of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ being continuous, and (ii) show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is continuous and $U \subset \mathbb{R}^{k}$ is open, $C \subset \mathbb{R}^{k}$ is closed then $f^{-1}(U)=\{x: f(x) \in U\}$ is open and $f^{-1}(C)=\{x: f(x) \in C\}$ is closed.

Solution: (i) f is continuous if for all $\underline{a} \in \mathbb{R}^{n}$ and $\varepsilon>0$ there exists $\delta>0$ such that $\|\underline{x}-\underline{a}\|<\delta$ implies $\|f(\underline{x})-f(\underline{a})\|<\varepsilon$.
(ii) Either of the two conclusions follows from the other as e.g. $\mathbb{R}^{n} \backslash f^{-1}(U)=f^{-1}\left(\mathbb{R}^{k} \backslash U\right)$, i.e. the complement of $f^{-1}(U)$ is $f^{-1}(C)$ with $C=\mathbb{R}^{k} \backslash U$, so if the 'closed' claim is shown, the 'open' one follows as a set is open if and only if its complement is closed. However, we proceed directly instead. To see the openness claim, suppose U is open, and $\underline{a} \in f^{-1}(U)$, i.e. $f(\underline{a}) \in U$. As U is open, there exists $\varepsilon>0$ such that $B_{\varepsilon}(f(\underline{a})) \subset U$, i.e. if $y \in \mathbb{R}^{k}$ with $\|y-f(\underline{a})\|<\varepsilon$ then $y \in U$. By the definition of continuity there exists $\delta>0$ such that $\|\underline{x}-\underline{a}\|<\delta$ implies $\|f(\underline{x})-f(\underline{a})\|<\varepsilon$, so if $\underline{x} \in B_{\delta}(\underline{a})$ then $\|f(\underline{x})-f(\underline{a})\|<\varepsilon$ and so $f(\underline{x}) \in U$, i.e. $\underline{x} \in f^{-1}(U)$. This shows that $B_{\delta}(\underline{a}) \subset f^{-1}(U)$, so $f^{-1}(U)$ is open. To see the closedness claim, suppose that C is closed and $\left\{\underline{x}_{j}\right\}$ is a sequence in $f^{-1}(C)$ (i.e. $f\left(\underline{x}_{j}\right) \in C$) converging to some $\underline{x} \in \mathbb{R}^{n}$. Since f is continuous, thus sequentially continuous, $\lim f\left(\underline{x}_{j}\right)=f(\underline{x})$, so $\left\{f\left(\underline{x}_{j}\right)\right\}$ is a convergent sequence of points in C, with limit $f(\underline{x})$. Since C is closed, $f(\underline{x}) \in C$, so $\underline{x} \in f^{-1}(C)$. Thus, $f^{-1}(C)$ contains its limit points, so it is closed.

2(a) (3 points.) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\frac{1}{5}\left(x^{5}+y^{5}\right)+\frac{1}{3} x^{3}-2 x-y$. Find all the critical points (i.e. points where $\nabla_{\mathbb{R}^{n}} f=0$) of f, and discuss whether these points are local \max / \min for f. Justify all claims either with proof or by using a theorem from lecture.

Solution: $\operatorname{Df}(x, y)=\left(x^{4}+x^{2}-2, y^{4}-1\right)=\left(\left(x^{2}-1\right)\left(x^{2}+2\right),\left(y^{2}+1\right)\left(y^{2}-1\right)\right)=\left((x-1)(x+1)\left(x^{2}+\right.\right.$ 2), $\left.(y-1)(y+1)\left(y^{2}+1\right)\right)$, so there are 4 critical points $(1,1),(-1,-1),(1,-1),(-1,1)$. The Hessian matrix at (x, y) is $\left(\begin{array}{cc}4 x^{3}+2 x & 0 \\ 0 & 4 y^{3}\end{array}\right)$ which gives positive definite quadratic form $6 \lambda^{2}+4 \mu^{2}$ at $(1,1)$ and negative definite quadratic form $-6 \lambda^{2}-4 \mu^{2}$ at $(-1,-1)$. Hence by the Second Derivative test from lecture (applicable because f is C^{2}, in fact C^{∞}), we see that f has a a local minimum at $(1,1)$ and a local maximum at $(-1,-1)$. At the point $(-1,1)$ the Hessian quadratic form is $-6 \lambda^{2}+4 \mu^{2}$ which changes sign (has positive max on S^{1} and a negative min on S^{1}), and hence, as we proved in lecture/section, it is neither a local max nor a lcoal min for f. Similarly the point $(1,-1)$ is neither a local max nor a local min for f.

2(b) (2 points.) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\sqrt{1+x^{2}+y^{2}}$. Find the tangent space of the graph of f at $(2,2,3) \in \mathbb{R}^{3}$.

Solution: From lecture/homework the tangent space is $\operatorname{Span}\left\{D_{1} G(\underline{0}), D_{2} G(\underline{0})\right\}$, where G is the graph map $G(x, y)=\left(x, y, \sqrt{1+x^{2}+y^{2}}\right)^{\mathrm{T}}$. Thus $D_{1} G(x, y)=\left(1,0, \frac{x}{\sqrt{1+x^{2}+y^{2}}}\right)^{\mathrm{T}}$ and $D_{2} G(x, y)=$ $\left(0,1, \frac{y}{\sqrt{1+x^{2}+y^{2}}}\right)^{\mathrm{T}}$, and hence the tangent space is $\operatorname{Span}\left\{\left(1,0, \frac{2}{3}\right)^{\mathrm{T}},\left(0,1, \frac{2}{3}\right)^{\mathrm{T}}\right\}$.

3(a) (3 points): (i) State the definition of " $\sum_{n=0}^{\infty} a_{n}$ converges," resp. " $\sum_{n=0}^{\infty} a_{n}$ converges absolutely," and (ii) show that if $\sum_{n=0}^{\infty} a_{n} c^{n}$ converges then $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges absolutely for $x \in \mathbb{R}$ with $|x|<|c|$.

Solution: (i) $\sum_{n=1}^{\infty} a_{n}$ convergent means that the sequence of partial sums $\left\{s_{n}\right\}_{n=1,2, \ldots}$ is convergent, and in this case we say $s=\lim s_{n}$ is "the sum of the series" (and we write $s=\sum_{n=1}^{\infty} a_{n}$). $\sum_{n=1}^{\infty} a_{n}$ absolutely convergent means that $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent. (ii) We may assume $c \neq 0$ since otherwise the conclusion is empty. Suppose $\sum_{n=0}^{\infty} a_{n} c^{n}$ converges. Since for any convergent series the terms converge to $0, \lim a_{n} c^{n}=0$, so as every convergent sequence is bounded, there exists $M>0$ such that $\left|a_{n} c^{n}\right| \leq M$ for all n. Then $\left|a_{n} x^{n}\right|=\left|a_{n} c^{n}\right||x / c|^{n} \leq M|x / c|^{n}$. Now, the series $\sum_{n=0}^{\infty} M|x / c|^{n}$ is a convergent geometric series since $|x / c|<1$, so its partial sums are bounded (as they converge to the actual sum of the series). Correspondingly, the partial sums of $\sum_{n=0}^{\infty}\left|a_{n} x^{n}\right|$ are also bounded: $\sum_{n=0}^{N}\left|a_{n} x^{n}\right| \leq \sum_{n=0}^{N} M|x / c|^{n}$. Since a series with non-negative terms converges if and only if its partial sums are bounded, $\sum_{n=0}^{\infty}\left|a_{n} x^{n}\right|$ converges, i.e. $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges absolutely.
$\mathbf{3 (b)}$ (3 points) If $\cos x, \sin x$ are defined by $\cos x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}$ and $\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$, prove, for all $x \in \mathbb{R}, \frac{d}{d x} \cos x=-\sin x, \frac{d}{d x} \sin x=\cos x$, and $\sin ^{2} x+\cos ^{2} x=1$.
Solution: First note that the series are convergent for all $x \in \mathbb{R}$ (e.g. by the ratio test), and hence by a theorem of lecture the series give C^{1} functions which can be differentiated simply by taking the termwise differentiated series. Thus

$$
\begin{aligned}
\frac{d}{d x} \cos x & =\sum_{k=1}^{\infty}(-1)^{k} 2 k x^{2 k-1} /(2 k)! \\
& =-\sum_{k=1}^{\infty}(-1)^{k-1} x^{2 k-1} /(2 k-1)!=-\sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)!=\sin x \\
\frac{d}{d x} \sin x & =\sum_{k=0}^{\infty}(-1)^{k}(2 k+1) x^{2 k} /(2 k+1)! \\
& =\sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)!=\cos x .
\end{aligned}
$$

and then $\frac{d}{d x}\left(\sin ^{2} x+\cos ^{2} x\right)=2 \sin x \cos x-2 \cos x \sin x=0$, so that $\sin ^{2} x+\cos ^{2} x$ is a constant C on all of \mathbb{R}. However $\cos 0=1$ and $\sin 0=0$, so $C=1$.

4(a) (4 points.) (i) Give the definition of a curve $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ having finite length, and for curves of finite length state the definition of the "length of a curve $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$." (ii) Show that if $q:[a, b] \rightarrow \mathbb{R}^{n}$ has the property that $\left.q\right|_{(a, b]}$ is C^{1} and $\lim _{c \rightarrow a} \int_{c}^{b}\left\|\gamma^{\prime}(t)\right\| d t$ exists then γ has finite length, equal to $\lim _{c \rightarrow a} \int_{c}^{b}\left\|\mathfrak{q}^{\prime}(t)\right\| d t$.
Hint: Any curve is continuous by definition. Use this, and the definition of length together with the theorem from lecture for C^{1} curves.

Solution: (i) A curve (a continuous map) $\mathcal{\Upsilon}:[a, b] \rightarrow \mathbb{R}^{n}$ has finite length if the set $\{\ell(\Upsilon, \mathcal{P})$: \mathcal{P} partition of $[a, b]\}$ is bounded above, in which case $\ell(\underline{y})$ is the supremum of this set. Here $\ell(\Upsilon, \mathcal{P})=\sum_{j=1}^{N}\left\|\Upsilon\left(t_{j}\right)-\Upsilon\left(t_{j-1}\right)\right\|$, where \mathcal{P} is the partition $a=t_{0}<t_{1}<\ldots<t_{N}=b$.
(ii) For $c>a,\left.\gamma\right|_{[c, b]}$ is C^{1} by assumption, so by the theorem from class, it is finite length with $\ell\left(\left.\underline{q}\right|_{[c, b]}\right)=\int_{c}^{b}\left\|\mathfrak{q}^{\prime}(t)\right\| d t$. In particular, for any partition \mathcal{P}^{\prime} of $[c, b], \ell\left(\left.\underline{q}\right|_{[c, b]}, \mathcal{P}^{\prime}\right) \leq \int_{c}^{b}\left\|\underline{q}^{\prime}(t)\right\| d t$. Now, if \mathcal{P} is any partition $a=t_{0}<t_{1}<\ldots<t_{N}=b$ of $[a, b]$, let $c=t_{1}$, so $c=t_{1}<t_{2}<\ldots<t_{N}=$ b is a partition \mathcal{P}^{\prime} of $[c, b]$, and so $\ell(\Upsilon, \mathcal{P})=\|\Upsilon(c)-\Upsilon(a)\|+\ell\left(\underline{\gamma}, \mathcal{P}^{\prime}\right) \leq\|\Upsilon(c)-\Upsilon(a)\|+\int_{c}^{b}\left\|\Upsilon^{\prime}(t)\right\| d t$. Since $\mathcal{\gamma}$ is continuous on $[a, b]$, so is the function $f(t)=\|\gamma(t)-\gamma(a)\|$ (being the composite of continuous functions); since $[a, b]$ is compact, f is bounded, say $f(t) \leq M$ for all $t \in[a, b]$. Moreover, as $S(\tau)=\int_{\tau}^{b}\left\|\gamma^{\prime}(t)\right\|, d t$ is a decreasing function of τ (as the integrand is non-negative),

$$
\ell=\lim _{\tau \rightarrow a} S(c),
$$

which exists by assumption, is actually $\sup \{S(\tau): \tau \in(a, b]\}$, so is in particular $\geq \int_{c}^{b}\left\|\underline{q}^{\prime}(t)\right\| d t$. Thus, $\ell(\gamma, \mathcal{P}) \leq M+\ell$, proving that the length of the polygonal approximations is bounded above by $M+\ell$, and thus q has finite length. In particular, for any $c \in(a, b), \ell(\Upsilon)=\ell\left(\left.\underline{q}\right|_{[a, c]}\right)+\ell\left(\left.\underline{q}\right|_{[c, b]}\right)$ as shown on the problem set, so $\ell(\mathcal{q})$ is an upper bound for $\left\{\ell\left(\left.\gamma\right|_{[c, b]}\right): \underline{c} \in(a, b]\right\}$, and thus $\ell(\gamma) \geq \ell$. Now, by the continuity of Υ, given $\varepsilon>0$ there is $\delta>0$ such that $t<a+\delta$ implies $\|\gamma(t)-\gamma(a)\|<\varepsilon$. If \mathcal{P} is a partition of $[a, b]$ as above, add a new division point $\sigma \in\left(t_{0}, \min \left(t_{1}, \delta\right)\right)$ to obtain a new partition \mathcal{Q}. Then
$\ell(\gamma, \mathcal{P})=\left\|\chi\left(t_{1}\right)-\gamma\left(t_{0}\right)\right\|+\ell\left(\left.\gamma\right|_{\left[t_{1}, b\right]}, \mathcal{P}^{\prime}\right) \leq\left\|\chi(\sigma)-\gamma\left(t_{0}\right)\right\|+\left\|\not\left(t_{1}\right)-\gamma(\sigma)\right\|+\ell\left(\left.\gamma\right|_{\left[t_{1}, b\right]}, \mathcal{P}^{\prime}\right)=\ell(\gamma, \mathcal{Q})$,
and

$$
\ell(\Upsilon, \mathcal{Q})=\left\|\Upsilon(\sigma)-\Upsilon\left(t_{0}\right)\right\|+\ell\left(\left.\Upsilon\right|_{[\sigma, b]}, \mathcal{Q}^{\prime}\right) \leq \varepsilon+\ell\left(\left.\Upsilon\right|_{[\sigma, b]}\right) \leq \varepsilon+\ell .
$$

So for any $\varepsilon>0, \ell+\varepsilon$ is an upper bound for the lengths of the polygonal approximations to γ, so $\ell(\gamma) \leq \ell+\varepsilon$, i.e. as $\varepsilon>0$ is arbitary, $\ell(\gamma) \leq \ell$. Since the opposite inequality is already shown, $\ell(q)=\ell$.
Note: One can streamline the argument somewhat to show the bound $\ell(\Upsilon, \mathcal{P}) \leq \ell+\varepsilon$ directly, without showing $\ell(\gamma, \mathcal{P}) \leq \ell+M$ first.

4(b) (3 points.) (i) Show that the map $q:[0,1] \rightarrow \mathbb{R}^{2}$ given by $\gamma(0)=0, \gamma(t)=(t \cos \log t, t \sin \log t)$ is continuous, C^{1} on (0,1], but not on $[0,1]$, and (ii) show that q has finite length, and compute it. Note: γ is called a logarithmic spiral. You may use the results of 4 (a) even if you have not proved them.

Solution: (i) The given map is C^{1} in $(0,1]$ by the chain rule, and continuous at 0 since sin, cos are bounded by 1 ; in fact, $0 \leq t<\varepsilon$ implies $\|\gamma(t)\|=t \sqrt{\cos ^{2} \log t+\sin ^{2} \log t}=t<\varepsilon$. On the other hand, it is not C^{1} since for $t>0 \gamma^{\prime}(t)=(\cos \log t-\sin \log t, \sin \log t+\cos \log t)$, and $\lim _{t \rightarrow 0} \gamma^{\prime}(t)$ does not exist as is shown by taking $t_{n}=e^{-2 n \pi}$ with $\mathfrak{\gamma}^{\prime}\left(t_{n}\right)=(1,1)$ while for $t_{n}^{\prime}=e^{-2 n \pi+\pi}$, $\gamma^{\prime}\left(t_{n}^{\prime}\right)=(-1,-1)$, with $\lim t_{n} \rightarrow 0, \lim t_{n}^{\prime}=0$, while if the limit existed, it would have to be equal
to both of the unequal limits $\lim \gamma^{\prime}\left(t_{n}\right)$ and $\lim \gamma^{\prime}\left(t_{n}^{\prime}\right)$. Thus, the derivative cannot be continuous at 0 , so Υ is not C^{1}. (A different way to argue is that q is not even differentiable at 0 : one needs to evaluate the difference quotients $\gamma(t) / t, t>0$, and let $t \rightarrow 0$; since $\gamma(t) / t=(\cos \log t, \sin \log t)$, arguing as above shows that the limit does not exists.)
(ii) By part (a), it suffices to check that $\lim _{c \rightarrow 0} \int_{c}^{1}\left\|\gamma^{\prime}(t)\right\| d t$ exists. But for $t>0$,

$$
\begin{aligned}
\left\|\mathfrak{\gamma}^{\prime}(t)\right\| & =\sqrt{(\cos \log t-\sin \log t)^{2}+(\sin \log t+\cos \log t)^{2}} \\
& =\sqrt{2 \cos ^{2} \log t+2 \sin ^{2} \log t}=\sqrt{2}
\end{aligned}
$$

so $\ell\left(\left.\gamma\right|_{[c, 1]}\right)=\sqrt{2}(1-c)$, and thus $\lim _{c \rightarrow 0} \ell\left(\left.\gamma\right|_{[c, 1]}\right)=\sqrt{2}$, yielding that the curve has finite length, which is in fact $\sqrt{2}$.

