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1(a) (3 points) State the chain rule for the composite function g ◦ f , where f : U → V and g : V → Rp, where
U ⊂ Rn and V ⊂ Rm are open. Using the chain rule, or otherwise, prove that if g : Rn → R is differentiable on
Rn, if a, b ∈ Rn, and if h(t) = g(a+ tb) for t ∈ R, then h ′(0) exists, and find its value in terms of the components
b1, . . . , bn of b and the partial derivatives of g at a.

Solution: The chain rule says that if f is differentiable at a ∈ U and if g is differentiable at f(a) ∈ V , then the
composite g ◦f is differentiable at a and D(g ◦f)(a) = Dg(f(a))Df(a) where the expression on the right is matrix
multiplication of the p× n matrix Dg(f(a)) and the n×m matrix Df(a).

Notice that h(t) = g ◦ f(t) where f : R → Rn is defined by f(t) = a + tb. Since in this case p = 1 and
m = 1, the above chain rule says d

dt(g(a + tb)) = (Dg)(a + tb)f ′(t), and f ′(t) is the constant vector b; thus
d
dt(f(a+ tb)) =

∑n
j=1(Djg)(a+ tb)bj , which at t = 0 gives h ′(0) =

∑n
j=1 bjDjg(a).

1(b) (3 points.) (i) Give the definition of “U is open” and “C is closed” as applied to subsets U,C ⊂ Rn, and
(ii) give the proof that Rn \ U closed implies U open.

Note: In lecture we proved Rn \ U is closed ⇐⇒ U is open; in (ii) you are only being asked to prove “⇒.”

Solution: U open means that for each y ∈ U there is a ρ > 0 such that Bρ(y) ⊂ U . C closed means that C
contains all its limit points. That is if {xk} is a convergent sequence and xk ∈ C for each k, then limxk ∈ C.

Let y ∈ U . We claim that there is ρ > 0 such that Bρ(y) ⊂ U . Otherwise we would have B1/k(y) ∩ (Rn \ U) 6= ∅
for each k = 1, 2, . . ., and hence we could select xk ∈ B1/k(y)∩ (Rn \U) for each k = 1, 2, . . .. Then ‖xk− y‖ < 1/k
for each k and hence xk → y, thus proving that y is a limit point of Rn \ U . But Rn \ U is closed, so all limit
points of Rn \ U must be in Rn \ U , contradicting the fact that y ∈ U .
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2(a) (3 points): Suppose δ > 0 and
∑∞

n=0 anx
n,
∑∞

n=0 bnx
n are convergent power series in (−δ, δ). Prove∑∞

n=0 anx
n =

∑∞
n=0 bnx

n for each x ∈ (−δ, δ) implies that an = bn for each n = 0, 1, 2, . . ..

Hint: Since we can take cn = an − bn, it suffices to prove
∑∞

n=0cnx
n = 0∀x ∈ (−δ, δ)⇒ cn = 0∀n = 0, 1, 2, . . ..

Solution: Let f(x) =
∑∞

n=0 cnx
n for |x| < δ. By a theorem of lecture we have f (k)(x) =

∑∞
n=k n(n− 1) · · · (n−

k+ 1)cnx
n−k for |x| < δ, so f (k)(0) = k!ck. But of course f (k)(0) = 0 because we are given f ≡ 0, so in fact ck = 0

for each k.

Alternative Method for 2(a): Setting x = 0 in the identity
∑∞

n=0 cnx
n = 0 we get c0 = 0 hence x

∑∞
n=1 cnx

n−1 =
0 for |x| < δ and so

∑∞
n=1 cnx

n−1 = 0 for 0 < |x| < δ. However by a theorem of lecture power series are dif-
ferentiable (hence continuous) in their interval of convergence, so limx→0

∑∞
n=1 cnx

n−1(= 0) is just the value of∑∞
n=1 cnx

n−1 at x = 0, which is c1. Hence c1 = 0. Continuing in this manner (formally by induction on n) we get
cn = 0 for each n.

2(b) (3 points.) (i) Prove that the series
∑∞

n=0
xn

n! is AC on all of R.

(ii) If we define expx =
∑∞

n=0
xn

n! , prove that exp(x+ t) = (expx)(exp t).

Hint for (ii): For fixed t let f(x) = exp(x+ t) and g(x) = (exp t)(expx). Start by checking that f (n)(0) = g(n)(0)
for each n = 0, 1, 2, . . ..

Solution: (i) If x 6= 0 we have |xn+1/(n+ 1)!|/|xn/n!| = |x|/(n+ 1)→ 0, hence by the ratio test the series is AC
(hence convergent) for all x.

(ii) Using the theorem from lecture the power series is differentiable inside the interval of convergence and the
derivative can be correctly computed by using termwise differentiation in the interval of convergence. Thus
d
dx expx =

∑∞
n=1 nx

n−1/n! =
∑∞

n=1 x
n−1/(n−1)! =

∑∞
n=0 x

n/n! = expx, and so by the chain rule d
dx exp(x+ t) =

exp(x+t), and by repeatedly applying this we see that g(n)(x) = exp t expx and f (n)(x) = exp(x+t). In particular
f (n)(0) = g(n)(0) = exp t, so f and g have the same Taylor series with base-point zero. Now exp differentiable on
R hence continuous hence | expx| bounded on each closed interval |x| ≤ R. Let M = sup|s|<|t|+R | exp s|. Then

Rn sup|x|<R |f (n)(x)|/n! = Rn sup|x|<R | exp(x + t)|/n! ≤ MRn/n!. Since Rn/n! → 0 as n → ∞, this shows that

there for each R > 0 there is a C such that Rn sup|x|<R |f (n)(x)|/n! ≤ C for all n = 0, 1, 2, . . ., and hence by a
theorem of lecture the Taylor series of f converges to f(x) = exp(x + t). Since by definition of exp the Taylor
series of g(x) converges to (expx)(exp t) and we have shown that the 2 Taylor series coincide, this shows that
exp(x+ t) = expx exp t as required.
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3(a) (4 points.) Let f : R2 → R be defined by f(x, y) = 1
3y

3 +xy+x2. Find the critical points (i.e. points where
∇R2f = 0) of f , and state whether each critical point is a local max, local min or neither. Make sure you justify
all claims you make in your argument, either with a proof or by quoting the appropriate theorem from lecture.

Solution: ∇f(x, y) =

(
y + 2x
y2 + x

)
= 0 ⇐⇒ x = −y/2 = −y2 ⇐⇒ (x, y) = (0, 0) or (−1/4, 1/2). Thus there are

two critical points (0, 0)T , (−1/4, 1/2)T . The Hessian matrix (DiDjf(x, y)) is

(
2 1
1 2y

)
which at (0, 0)T is

(
2 1
1 0

)
,

so the Hessian quadratic form is 2y21 + 2y1y2 which is indefinite (e.g. it is negative at y1 = 1, y2 = −2 and positive
at y1 = 1, y2 = 0), so from lecture we know that f takes neither a local max nor a local min at (0, 0). At the critical

point (−1/4, 1/2)T the Hessian matrix is

(
2 1
1 1

)
, so the Hessian quadratic form is 2y21+2y1y2+y22 = y21+(y1+y2)

2

which is clearly positive definite, so from lecture the critical point (−1/4, 1/2)T ) is a strict local min for f .

3(b) (3 points.) Give the definition of “length of a curve γ : [a, b]→ Rn.” Using any theorem from lecture that
you need, find the length of γ in case n = 2 and γ(t) = (sin t2, cos t2), t ∈ [0, 2].

Solution: For any partition P : a = t0 < t2 < · · · < tN = b of [a, b], we define `(γ,P) (“the length of the
polygonal approximation determined by P”) by `(γ,P) =

∑N
j=1 ‖γ(tj) − γ(tj−1)‖, and then `(γ) = sup{`(γ,P) :

P is any partition of [a, b]} if the set on the right is bounded, otherwise we say the length is ∞.

The given curve is C1, so from lecture its length is given by
∫ 2
0 ‖γ

′(t)‖ dt =
∫ 2
0 2t dt = t2|20 = 4.
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4(a) (3 points.) Prove that M = {x = (x1, x2, x3) ∈ R3 : x23 = 1 + x21 + x22} is a C1 manifold, and find the
tangent space TaM at the point a = (2, 2,−3).

Note: You should give a basis for the tangent space.

Solution: Let g1(x1, x2) =
√

1 + x21 + x22 and g2(x1, x2) = −
√

1 + x21 + x22 (so that g1, g2 are both C∞ on all of R2

with g1 ≥ 1 and g2 ≤ −1). Observe that then a ∈ graph g1 and b ∈ graph g2 ⇒ ‖a− b‖ ≥ |a3− b3| ≥ 2, so any open
ball Bδ(a) with a ∈ graph g1 and δ < 2 does not intersect graph g2. Let G1(x1, x2) be the graph map of g1, so that
G1(x1, x2) = (x1, x2, g1(x1, x2)). Then for a, δ as above we take a0 ∈ R2 withG1(a0) = α and then haveBδ(a)∩M =
Bδ(a) ∩ G1(R2), and we note that Bδ(a) ∩ G1(R2) = G1(U), where U = {(x1, x2) ∈ R2 : ‖G1(x) − G(a0)‖ < δ}.
Evidently U is an open set because y ∈ U ⇒ ‖G(y)−G(a0)‖ < δ and by continuity of G1 at y there is η > 0 such
the ‖x−y‖ < η ⇒ ‖G(x)−G(y)‖ < δ−‖G(y)−G(a0)‖ and so ‖G(x)−G(a0)‖ ≤ ‖G(x)−G(y)‖+‖G(y)−Ga0‖ < δ.
Thus we have checked the definition of C1 manifold at each point in G1(R2). Similarly we check at each point of
G2(R2). Thus M is a manifold.

Now the point a = (2, 2,−3) ∈ G2(R2) (because −3 = g2(2, 2)). From lecture a basis for the tangent space TaM
is D1G2(2, 2), D2G(2, 2) = (1, 0,−2/3), (0, 1,−2/3).

Alternative method to check that M is a manifold: As proved in HW 7, Problem 5, solutions (applied to
the present case when k = 2 and n = 3), M is a C1 manifold if for each a ∈M there is an open set W containing
a and a C1 map g : U → R with U open in R2 and W ∩M = G(U), where G is the graph map of g. In this case
M = (M ∩ {x : x3 > 0}) ∪ (M ∩ {x : x3 < 0}) and M ∩ {x : x3 > 0} = G1(R2) and M ∩ {x : x3 < 0} = G2(R2)
so every point of M satisfies the above criterion either with W = {x : x3 > 0} and U = R2 and g = g1 or with
W = {x : x3 < 0} and U = R2 and g = g2.

Second alternative method to check that M is a manifold: The given M is the zero set of the function
g(x) = x23 − x21 − x22 − 1 and the gradient ∇R3g(x) is 2(−x1,−x2, x3)T which is non-zero at each point of M
(because |x3| ≥ 1 on M), so by the first part of the Lagrange Multiplier theorem of lecture we know that M is a
2-dimensional C1 manifold.

Note: This method should ideally not really be used at this stage, since we deferred the proof of the first part of
the Lagrange multiplier theorem (in fact that will not be proved until the last week of the quarter).

4(b) (3 points.) (i) If M is a k-dimensional C1 submanifold of Rn (n ≥ 2 and 1 ≤ k ≤ n − 1 given), and
f : W → R is C1 with W open, W ⊃ M , give the definition of “the tangential gradient ∇Mf” and “a critical
point of f |M .” (ii) In the special case when M = Sn−1 (so k = n − 1 and f is C1 on an open set W ⊃ Sn−1)
prove that f |Sn−1 has at least two distinct critical points a, b ∈ Sn−1.

Solution (i): For a ∈M , ∇Mf(a) is defined to be PTaM (∇Rnf(a)), where PTaM denotes the orthogonal projection
of Rn onto TaM . a ∈M is a critical point of f |M if ∇Mf(a) = 0.

Solution (ii): Sn−1 is a bounded closed subset of Rn hence by a result proved in lecture/homework, the continuous
function f |Sn−1 : Sn−1 → R attains a max and a min at points a, b ∈ Sn−1 and by another result of lecture the
points a, b are critical points of f |M . Finally a, b are distinct unless the max and min values coincide, but in that
case f is constant on Sn−1 so all points of Sn−1 are critical points of f |Sn−1 in that case.


