Mathematics Department Stanford University Math 51H Mid-Term 1

October 13, 2015

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages

Note: work sheets are provided for your convenience, but will not be graded

Q.1	
_Q.2	
Q.3	
Q.4	
T/25	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

Name:_

1 (a) (3 points): (i) Give the ε , N definition of " $\lim a_n = \ell$," where $\{a_n\}_{n=1,2,\dots}$ is a given sequence in \mathbb{R} and $\ell \in \mathbb{R}$, and (ii) use your definition to prove that if $\{a_n\}_{n=1,2,\dots}$ converges to $\ell \neq 0$, then there exists N such that $|a_n| > |\ell|/2$ for $n \geq N$.

Note for (ii): You may not use any of our limit theorems to prove (ii), only the definition of the limit, and properties of the reals.

1(b) (3 points): Suppose that $\{a_n\}_{n=1}^{\infty}$ is a bounded sequence. Let $s_k = \sup\{a_n : n \ge k\}$, $k \in \mathbb{N}^+$, i.e. s_k is the sup of all but the first k-1 elements of the original sequence. Show that $\lim s_k$ exists.

Note: You should in particular explain why s_k itself exists. One writes $\limsup a_n = \limsup s_k$; this gives a measure how large a_n can be for large n.

2(a) (3 points): (i) Give the definition of the orthocomplement V^{\perp} of a subspace V of an inner product space Z (if you wish, you way assume $Z = \mathbb{R}^n$ with usual inner product) and (ii) show that if $\{v_1, \ldots, v_k\}$ is a basis of a subspace V of Z (again $Z = \mathbb{R}^n$ may be assumed), then $V^{\perp} = \{w \in Z : w \cdot v_j = 0, j = 1, 2, \ldots, k\}.$

2(b) (4 points): Suppose V is a vector space (if you wish you may assume that it is a subspace of \mathbb{R}^n), $\underline{v}_1, \ldots, \underline{v}_k \in V$ and $V = \operatorname{span}\{\underline{v}_1, \ldots, \underline{v}_k\}$. Show that there is a sub-collection $\{\underline{v}_{i_1}, \underline{v}_{i_2}, \ldots, \underline{v}_{i_l}\}$, $i_1 < i_2 < \ldots < i_l$ (possibly l = 0), such that $\{\underline{v}_{i_1}, \underline{v}_{i_2}, \ldots, \underline{v}_{i_l}\}$ is a basis for V. Hint for (b): Analogously to the proof of the basis theorem, consider a minimal size subcollection that spans V, or a maximal size subcollection which is linearly independent.

3(a) (3 points): (i) State the rank nullity theorem. (ii)-(iii): Suppose A is an $m \times n$ matrix and $C(A) = \mathbb{R}^m$. (ii) Show that $m \leq n$. (iii) If in addition $A\underline{x} = \underline{b}$ has a unique solution for every $\underline{b} \in \mathbb{R}^m$, show that m = n.

3(b) (3 points): (i) Find the matrices A_1, A_2 of the orthogonal projections P_{V_j} , j = 1, 2, to $V_1 = \text{Span}\{(1, 1, 1)^{\text{T}}\}$ and $V_2 = \text{Span}\{(1, -1, 0)^{\text{T}}\}$ in \mathbb{R}^3 . (ii) Show that the matrix of the orthogonal projection P_V to $V = \text{Span}\{(1, 1, 1)^{\text{T}}, (1, -1, 0)^{\text{T}}\}$ is $A_1 + A_2$. Hint for (ii): Note that $(1, 1, 1)^{\text{T}}$ and $(1, -1, 0)^{\text{T}}$ are orthogonal.

4 (6 points): Find (i) rref A (showing all row operations), (ii) a basis for the null space N(A), (iii) a basis for the column space of A and (iv) dim $N(A^{T})$, if

$$A = \begin{pmatrix} 1 & 2 & 3 & 1 & 1 \\ -1 & -2 & -2 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2 \end{pmatrix}$$

work-sheet 1/2

•

work-sheet 2/2

•