Mathematics Department Stanford University Math 51H Mid-Term 1

October 13, 2015

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded

Q. 1	
Q.2	
Q.3	
Q. 4	
$\mathrm{~T} / 25$	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

1 (a) (3 points): (i) Give the ε, N definition of " $\lim a_{n}=\ell$," where $\left\{a_{n}\right\}_{n=1,2, \ldots}$ is a given sequence in \mathbb{R} and $\ell \in \mathbb{R}$, and (ii) use your definition to prove that if $\left\{a_{n}\right\}_{n=1,2, \ldots}$ converges to $\ell \neq 0$, then there exists N such that $\left|a_{n}\right|>|\ell| / 2$ for $n \geq N$.
Note for (ii): You may not use any of our limit theorems to prove (ii), only the definition of the limit, and properties of the reals.

1(b) (3 points): Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence. Let $s_{k}=\sup \left\{a_{n}: n \geq k\right\}$, $k \in \mathbb{N}^{+}$, i.e. s_{k} is the sup of all but the first $k-1$ elements of the original sequence. Show that $\lim s_{k}$ exists.
Note: You should in particular explain why s_{k} itself exists. One writes $\lim \sup a_{n}=\lim s_{k}$; this gives a measure how large a_{n} can be for large n.

2(a) (3 points): (i) Give the definition of the orthocomplement V^{\perp} of a subspace V of an inner product space Z (if you wish, you way assume $Z=\mathbb{R}^{n}$ with usual inner product) and (ii) show that if $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of a subspace V of Z (again $Z=\mathbb{R}^{n}$ may be assumed), then $V^{\perp}=\left\{w \in Z: w \cdot v_{j}=0, j=1,2, \ldots, k\right\}$.

2(b) (4 points): Suppose V is a vector space (if you wish you may assume that it is a subspace of $\left.\mathbb{R}^{n}\right), \underline{v}_{1}, \ldots, \underline{v}_{k} \in V$ and $V=\operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$. Show that there is a sub-collection $\left\{\underline{v}_{i_{1}}, \underline{v}_{i_{2}}, \ldots, \underline{v}_{i_{l}}\right\}$, $i_{1}<i_{2}<\ldots<i_{l}$ (possibly $l=0$), such that $\left\{\underline{v}_{i_{1}}, \underline{v}_{i_{2}}, \ldots, \underline{v}_{i_{l}}\right\}$ is a basis for V.
Hint for (b): Analogously to the proof of the basis theorem, consider a minimal size subcollection that spans V, or a maximal size subcollection which is linearly independent.

3(a) (3 points): (i) State the rank nullity theorem. (ii)-(iii): Suppose A is an $m \times n$ matrix and $C(A)=\mathbb{R}^{m}$. (ii) Show that $m \leq n$. (iii) If in addition $A \underline{x}=\underline{b}$ has a unique solution for every $\underline{b} \in \mathbb{R}^{m}$, show that $m=n$.

3(b) (3 points): (i) Find the matrices A_{1}, A_{2} of the orthogonal projections $P_{V_{j}}, j=1,2$, to $V_{1}=\operatorname{Span}\left\{(1,1,1)^{\mathrm{T}}\right\}$ and $V_{2}=\operatorname{Span}\left\{(1,-1,0)^{\mathrm{T}}\right\}$ in \mathbb{R}^{3}. (ii) Show that the matrix of the orthogonal projection P_{V} to $\left.V=\operatorname{Span}\left\{(1,1,1)^{\mathrm{T}},(1,-1,0)^{\mathrm{T}}\right)\right\}$ is $A_{1}+A_{2}$.
Hint for (ii): Note that $(1,1,1)^{\mathrm{T}}$ and $(1,-1,0)^{\mathrm{T}}$ are orthogonal.

4 (6 points): Find (i) rref A (showing all row operations), (ii) a basis for the null space $N(A)$, (iii) a basis for the column space of A and (iv) $\operatorname{dim} N\left(A^{\mathrm{T}}\right)$, if

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 3 & 1 & 1 \\
-1 & -2 & -2 & 0 & 1 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

