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1 (a) (3 points): (i) Give the ε,N definition of “lim an = `,” where {an}n=1,2,... is a given sequence
in R and ` ∈ R, and (ii) use your definition to prove that if {an}n=1,2,... converges to ` 6= 0, then
there exists N such that |an| > |`|/2 for n ≥ N .

Note for (ii): You may not use any of our limit theorems to prove (ii), only the definition of the limit, and properties
of the reals.

Solution: lim an = ` means that for each ε > 0 there is N such that |an − `| < ε for all n ≥ N .

Now suppose that lim an = `, ` 6= 0. Then there exists N such that for n ≥ N , |an − `| < |`|/2;
here we use that ε = |`|/2 > 0 since ` 6= 0. Then for n ≥ N , |an| = |(an − `) + `| ≥ |`| − |an − `|
by the triangle ineqality (use x = an, y = `− an, so |x + y| ≤ |x|+ |y| is |`| ≤ |an|+ |`− an|, and
rearrange). Thus, for n ≥ N , |an| > |`| − |`|/2 = |`|/2, as desired.

1(b) (3 points): Suppose that {an}∞n=1 is a bounded sequence. Let sk = sup{an : n ≥ k},
k ∈ N+, i.e. sk is the sup of all but the first k − 1 elements of the original sequence. Show that
lim sk exists.

Note: You should in particular explain why sk itself exists. One writes lim sup an = lim sk; this gives a measure how
large an can be for large n.

First note that as {an : n ≥ k} ⊂ {an : n ∈ N+}, and the latter is bounded by assumption, so
is the former. Moreover, the former is non-empty as ak is in it, thus its supremum exists by the
completeness property of the reals.

We claim that {sk}∞k=1 is a decreasing sequence and it is bounded below, and thus by the theorem
from the lecture/book/HW, it converges. To see that sk ≥ sk+1, note that with Sk = {an : n ≥ k},
Sk+1 ⊂ Sk. Thus, any upper bound for Sk is an upper bound for Sk+1, in particular sk = supSk

is such. Since sk+1 = supSk+1 is the least upper bound for Sk+1, we have sk+1 ≤ sk, as desired.
Now, to see that {sk}∞k=1 is bounded below, let C be a lower bound for S1 = {an : n ∈ N+} so
an ≥ C for all n. Thus, for every k, ak ∈ Sk shows that sk ≥ ak ≥ C so C is a lower bound for the
sequence {sk}∞k=1. As already explained, this completes the proof of the convergence of {sk}∞k=1.
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2(a) (3 points): (i) Give the definition of the orthocomplement V ⊥ of a subspace V of an
inner product space Z (if you wish, you way assume Z = Rn with usual inner product) and (ii)
show that if {v1, . . . , vk} is a basis of a subspace V of Z (again Z = Rn may be assumed), then
V ⊥ = {w ∈ Z : w · vj = 0, j = 1, 2, . . . , k}.

Solution: The orthocomplement V ⊥ is the set

V ⊥ = {w ∈ Z : ∀v ∈ V,w · v = 0};

note that V ⊥ is a subspace of Z.

Let {v1, . . . , vk} be a basis for V . We now show that

V ⊥ = {w ∈ Z : w · vj = 0, j = 1, 2, . . . , k}.

Indeed, certainly if w ∈ V ⊥ then w · vj = 0 for all j, giving the containment ⊂. Conversely, if

w · vj = 0 for all j, then w ·
∑k

j=1 cjvj = 0 for all cj ∈ R by the linearity of the inner product in

its second slot. But any v ∈ V can be written as v =
∑k

j=1 cjvj since the vj form a basis of V , so

w ·v = 0 for all v ∈ V , thus w ∈ V ⊥. This shows the containment ⊃, and thus the claimed equality.

2(b) (4 points): Suppose V is a vector space (if you wish you may assume that it is a subspace of
Rn), v1, . . . , vk ∈ V and V = span{v1, . . . , vk}. Show that there is a sub-collection {vi1 , vi2 , . . . , vil},
i1 < i2 < . . . < il (possibly l = 0), such that {vi1 , vi2 , . . . , vil} is a basis for V .

Hint for (b): Analogously to the proof of the basis theorem, consider a minimal size subcollection that spans V , or a
maximal size subcollection which is linearly independent.

Solution: Let

S = {l ∈ {0, 1, . . . , k} : ∃i1 < i2 < . . . < il s.t. span{vi1 , vi2 , . . . , vil} = V }.

Then k ∈ S since ij = j for all j = 1, . . . , k gives a spanning set, so S is a non-empty set of positive
integers. Correspondingly it has a smallest element, call it l. Then there exists i1 < i2 < . . . < il
such that span{vi1 , vi2 , . . . , vil} = V . We claim that {vi1 , vi2 , . . . , vil} is a basis of V ; since it spans,
we just need to show it is linearly independent. Note that if l = 0, the collection is the empty
collection, and is thus linearly independent by definition, and V = {0}. So suppose l ≥ 1, and
{vi1 , vi2 , . . . , vil} is not linearly independent. Then as shown in lecture/book there exists m such
that vim is a linear combination of the remaining vij : vim =

∑
j 6=m cjvij for some scalars cj . In

particular, any vector v in the span of {vi1 , vi2 , . . . , vil}, so v =
∑l

r=1 dirvir for some scalars dir , is
also in the span of the remaining vij (with vim dropped), by substituting in the linear combination

vim =
∑

j 6=m cjvij into v =
∑l

r=1 dirvir . Thus, l−1 ∈ S since the remaining l−1 vectors vij satisfy
all requirements for l − 1 to be in S. But this contradicts that l is the smallest element of S.
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3(a) (3 points): (i) State the rank nullity theorem. (ii)-(iii): Suppose A is an m× n matrix and
C(A) = Rm. (ii) Show that m ≤ n. (iii) If in addition Ax = b has a unique solution for every
b ∈ Rm, show that m = n.

Solution: (i) The rank nullity theorem is that for an m× n matrix A, dimN(A) + dimC(A) = n.
Alternatively, for a linear map T : V → W with V finite dimensional, dimV = dimN(T ) +
dim Ran(T ). (ii) By the rank-nullity theorem, dimC(A) + dimN(A) = n. Since dimN(A) ≥ 0,
this means dimC(A) ≤ n. So, if C(A) = Rm, so dimC(A) = m, we conclude that m ≤ n. (iii) If
Ax = b has a unique solution for every b ∈ Rm then N(A) = {0}; otherwise any non-zero element
(as well as 0) would solve Ax = 0. Thus, by the rank-nullity theorem, dimC(A) = n as desired.

3(b) (3 points): (i) Find the matrices A1, A2 of the orthogonal projections PVj , j = 1, 2, to
V1 = Span{(1, 1, 1)T} and V2 = Span{(1,−1, 0)T} in R3. (ii) Show that the matrix of the orthogonal
projection PV to V = Span{(1, 1, 1)T, (1,−1, 0)T)} is A1 + A2.

Hint for (ii): Note that (1, 1, 1)T and (1,−1, 0)T are orthogonal.

Solution: The orthogonal projection of a vector x to the span of a non-zero vector v is Pspan vx =
v·x
‖v‖2 v, i.e. explicitly the ith coordinate of Pspan vej is Pspan vej =

v·ej
‖v‖2 vi =

vj
‖v‖2 vi, which says exactly

that the ijth entry of the matrix of the projection is
vivj
‖v‖2 . Concretely, this gives

A1 =
1

3

1 1 1
1 1 1
1 1 1

 , A2 =
1

2

 1 −1 0
−1 1 0
0 0 0


We claim that the orthogonal projection to V = Span{v1, v2} is Pspan v1 +Pspan v2 . Indeed, suppose
x ∈ R3; we know that x = x‖ + x⊥ with x‖ ∈ V and x⊥ ∈ V ⊥, the decomposition of x is unique,
and PV x = x‖. Now, note that Pspan v1x + Pspan v2x ∈ Span{v1} + Span{v2} = Span{v1, v2} = V ,
so it suffices to show that x− (Pspan v1x+Pspan v2x) ∈ V ⊥. But by Problem 2(a)/the lecture/book,
this is equivalent to asking that (x − (Pspan v1x + Pspan v2x)) · vj = 0, j = 1, 2. We consider
j = 1; j = 2 is similar. Then (x − Pspan v1x) · v1 = 0 because Pspan v1 is orthogonal projection to
span{v1} so x − Pspan v1x ∈ span{v1}⊥. On the other hand, Pspan v2x · v1 = 0 since Pspan v2x ∈
span{v2}, and v2 · v1 = 0. In summary, (x− (Pspan v1x + Pspan v2x)) · vj = 0, j = 1, 2, proving that
x − (Pspan v1x + Pspan v2x) ∈ V ⊥, so PV x = Pspan v1x + Pspan v2x. Correspondingly, the matrix of
the orthogonal projection to V is

A = A1 + A2 =

 5
6

−1
6

1
3

−1
6

5
6

1
3

1
3

1
3

1
3

 .
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4 (6 points): Find (i) rrefA (showing all row operations), (ii) a basis for the null space N(A),
(iii) a basis for the column space of A and (iv) dimN(AT), if

A =

 1 2 3 1 1
−1 −2 −2 0 1
0 1 0 0 2


Solution: (i) 1 2 3 1 1
−1 −2 −2 0 1
0 1 0 0 2

r2 7→ r2 + r1

 1 2 3 1 1
0 0 1 1 2
0 1 0 0 2

 r2 ↔ r3

 1 2 3 1 1
0 1 0 0 2
0 0 1 1 2


r1 7→ r1 − 3r3

 1 2 0 −2 −5
0 1 0 0 2
0 0 1 1 2

 r1 7→ r1 − 2r2
 1 0 0 −2 −9

0 1 0 0 2
0 0 1 1 2


(ii)

rrefAx = 0 ⇐⇒
(
x1 = 2x4 + 9x5, x2 = −2x5, x3 = −x4 − 2x5

)
⇐⇒ x = x4(2, 0,−1, 1, 0)T + x5(9,−2,−2, 0, 1)T

with x4, x5 arbitrary, so N(A) = N(rrefA) = span{(2, 0,−1, 1, 0)T, (9,−2,−2, 0, 1)T}, and these
two vectors are indeed linearly independent (by inspection of the last two components, or the
general result from lecture), so they give a basis for N(A).

(iii) The pivot columns of rrefA are the first, second and third columns, so from lecture a basis for
C(A) is obtained by taking the first, second and third columns of A; that is, a basis for C(A) is
(1,−1, 0)T, (2,−2, 1)T, (3,−2, 0)T.

(iv) N(AT), which is a subspace of R3, is the orthocomplement of C(A), and the sum of the
dimensions of a subspace and its orthocomplement is that of the total space. Since dimC(A) = 3,
dimN(AT) = dimR3 − dimC(A) = 0, and thus N(AT) = {0}.
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