Mathematics Department Stanford University Math 51H Mid-Term 1

October 13, 2015

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded

Q. 1	
Q.2	
Q.3	
Q. 4	
$\mathrm{~T} / 25$	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

1 (a) (3 points): (i) Give the ε, N definition of " $\lim a_{n}=\ell$," where $\left\{a_{n}\right\}_{n=1,2, \ldots}$ is a given sequence in \mathbb{R} and $\ell \in \mathbb{R}$, and (ii) use your definition to prove that if $\left\{a_{n}\right\}_{n=1,2, \ldots}$ converges to $\ell \neq 0$, then there exists N such that $\left|a_{n}\right|>|\ell| / 2$ for $n \geq N$.
Note for (ii): You may not use any of our limit theorems to prove (ii), only the definition of the limit, and properties of the reals.

Solution: $\lim a_{n}=\ell$ means that for each $\varepsilon>0$ there is N such that $\left|a_{n}-\ell\right|<\varepsilon$ for all $n \geq N$.
Now suppose that $\lim a_{n}=\ell, \ell \neq 0$. Then there exists N such that for $n \geq N,\left|a_{n}-\ell\right|<|\ell| / 2$; here we use that $\varepsilon=|\ell| / 2>0$ since $\ell \neq 0$. Then for $n \geq N,\left|a_{n}\right|=\left|\left(a_{n}-\ell\right)+\ell\right| \geq|\ell|-\left|a_{n}-\ell\right|$ by the triangle ineqality (use $x=a_{n}, y=\ell-a_{n}$, so $|x+y| \leq|x|+|y|$ is $|\ell| \leq\left|a_{n}\right|+\left|\ell-a_{n}\right|$, and rearrange). Thus, for $n \geq N,\left|a_{n}\right|>|\ell|-|\ell| / 2=|\ell| / 2$, as desired.

1(b) (3 points): Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence. Let $s_{k}=\sup \left\{a_{n}: n \geq k\right\}$, $k \in \mathbb{N}^{+}$, i.e. s_{k} is the sup of all but the first $k-1$ elements of the original sequence. Show that $\lim s_{k}$ exists.
Note: You should in particular explain why s_{k} itself exists. One writes $\lim \sup a_{n}=\lim s_{k}$; this gives a measure how large a_{n} can be for large n.
First note that as $\left\{a_{n}: n \geq k\right\} \subset\left\{a_{n}: n \in \mathbb{N}^{+}\right\}$, and the latter is bounded by assumption, so is the former. Moreover, the former is non-empty as a_{k} is in it, thus its supremum exists by the completeness property of the reals.
We claim that $\left\{s_{k}\right\}_{k=1}^{\infty}$ is a decreasing sequence and it is bounded below, and thus by the theorem from the lecture/book/HW, it converges. To see that $s_{k} \geq s_{k+1}$, note that with $S_{k}=\left\{a_{n}: n \geq k\right\}$, $S_{k+1} \subset S_{k}$. Thus, any upper bound for S_{k} is an upper bound for S_{k+1}, in particular $s_{k}=\sup S_{k}$ is such. Since $s_{k+1}=\sup S_{k+1}$ is the least upper bound for S_{k+1}, we have $s_{k+1} \leq s_{k}$, as desired. Now, to see that $\left\{s_{k}\right\}_{k=1}^{\infty}$ is bounded below, let C be a lower bound for $S_{1}=\left\{a_{n}: n \in \mathbb{N}^{+}\right\}$so $a_{n} \geq C$ for all n. Thus, for every $k, a_{k} \in S_{k}$ shows that $s_{k} \geq a_{k} \geq C$ so C is a lower bound for the sequence $\left\{s_{k}\right\}_{k=1}^{\infty}$. As already explained, this completes the proof of the convergence of $\left\{s_{k}\right\}_{k=1}^{\infty}$.

2(a) (3 points): (i) Give the definition of the orthocomplement V^{\perp} of a subspace V of an inner product space Z (if you wish, you way assume $Z=\mathbb{R}^{n}$ with usual inner product) and (ii) show that if $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of a subspace V of Z (again $Z=\mathbb{R}^{n}$ may be assumed), then $V^{\perp}=\left\{w \in Z: w \cdot v_{j}=0, j=1,2, \ldots, k\right\}$.

Solution: The orthocomplement V^{\perp} is the set

$$
V^{\perp}=\{w \in Z: \forall v \in V, w \cdot v=0\} ;
$$

note that V^{\perp} is a subspace of Z.
Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for V. We now show that

$$
V^{\perp}=\left\{w \in Z: w \cdot v_{j}=0, j=1,2, \ldots, k\right\} .
$$

Indeed, certainly if $w \in V^{\perp}$ then $w \cdot v_{j}=0$ for all j, giving the containment \subset. Conversely, if $w \cdot v_{j}=0$ for all j, then $w \cdot \sum_{j=1}^{k} c_{j} v_{j}=0$ for all $c_{j} \in \mathbb{R}$ by the linearity of the inner product in its second slot. But any $v \in V$ can be written as $v=\sum_{j=1}^{k} c_{j} v_{j}$ since the v_{j} form a basis of V, so $w \cdot v=0$ for all $v \in V$, thus $w \in V^{\perp}$. This shows the containment \supset, and thus the claimed equality.

2(b) (4 points): Suppose V is a vector space (if you wish you may assume that it is a subspace of $\left.\mathbb{R}^{n}\right), \underline{v}_{1}, \ldots, \underline{v}_{k} \in V$ and $V=\operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$. Show that there is a sub-collection $\left\{\underline{v}_{i_{1}}, \underline{v}_{i_{2}}, \ldots, \underline{v}_{i_{l}}\right\}$, $i_{1}<i_{2}<\ldots<i_{l}$ (possibly $l=0$), such that $\left\{\underline{v}_{i_{1}}, \underline{v}_{i_{2}}, \ldots, \underline{v}_{i_{l}}\right\}$ is a basis for V.
Hint for (b): Analogously to the proof of the basis theorem, consider a minimal size subcollection that spans V, or a maximal size subcollection which is linearly independent.

Solution: Let

$$
S=\left\{l \in\{0,1, \ldots, k\}: \exists i_{1}<i_{2}<\ldots<i_{l} \text { s.t. } \operatorname{span}\left\{\underline{v}_{i_{1}}, \underline{v}_{i_{2}}, \ldots, \underline{v}_{i_{l}}\right\}=V\right\} .
$$

Then $k \in S$ since $i_{j}=j$ for all $j=1, \ldots, k$ gives a spanning set, so S is a non-empty set of positive integers. Correspondingly it has a smallest element, call it l. Then there exists $i_{1}<i_{2}<\ldots<i_{l}$ such that $\operatorname{span}\left\{\underline{v}_{i_{1}}, \underline{v}_{i_{2}}, \ldots, \underline{v}_{i_{l}}\right\}=V$. We claim that $\left\{\underline{v}_{i_{1}}, \underline{v}_{i_{2}}, \ldots, \underline{v}_{i_{l}}\right\}$ is a basis of V; since it spans, we just need to show it is linearly independent. Note that if $l=0$, the collection is the empty collection, and is thus linearly independent by definition, and $V=\{0\}$. So suppose $l \geq 1$, and $\left\{\underline{v}_{i_{1}}, \underline{v}_{i_{2}}, \ldots, \underline{v}_{i_{l}}\right\}$ is not linearly independent. Then as shown in lecture/book there exists m such that $v_{i_{m}}$ is a linear combination of the remaining $v_{i_{j}}: v_{i_{m}}=\sum_{j \neq m} c_{j} v_{i_{j}}$ for some scalars c_{j}. In particular, any vector v in the span of $\left\{\underline{v}_{i_{1}}, \underline{v}_{i_{2}}, \ldots, \underline{v}_{i_{l}}\right\}$, so $v=\sum_{r=1}^{l} d_{i_{r}} v_{i_{r}}$ for some scalars $d_{i_{r}}$, is also in the span of the remaining $v_{i_{j}}$ (with $v_{i_{m}}$ dropped), by substituting in the linear combination $v_{i_{m}}=\sum_{j \neq m} c_{j} v_{i_{j}}$ into $v=\sum_{r=1}^{l} d_{i_{r}} v_{i_{r}}$. Thus, $l-1 \in S$ since the remaining $l-1$ vectors $v_{i_{j}}$ satisfy all requirements for $l-1$ to be in S. But this contradicts that l is the smallest element of S.

3(a) (3 points): (i) State the rank nullity theorem. (ii)-(iii): Suppose A is an $m \times n$ matrix and $C(A)=\mathbb{R}^{m}$. (ii) Show that $m \leq n$. (iii) If in addition $A \underline{x}=\underline{b}$ has a unique solution for every $\underline{b} \in \mathbb{R}^{m}$, show that $m=n$.

Solution: (i) The rank nullity theorem is that for an $m \times n$ matrix $A, \operatorname{dim} N(A)+\operatorname{dim} C(A)=n$. Alternatively, for a linear map $T: V \rightarrow W$ with V finite dimensional, $\operatorname{dim} V=\operatorname{dim} N(T)+$ $\operatorname{dim} \operatorname{Ran}(T)$. (ii) By the rank-nullity theorem, $\operatorname{dim} C(A)+\operatorname{dim} N(A)=n$. Since $\operatorname{dim} N(A) \geq 0$, this means $\operatorname{dim} C(A) \leq n$. So, if $C(A)=\mathbb{R}^{m}$, so $\operatorname{dim} C(A)=m$, we conclude that $m \leq n$. (iii) If $A \underline{x}=\underline{b}$ has a unique solution for every $\underline{b} \in \mathbb{R}^{m}$ then $N(A)=\{0\}$; otherwise any non-zero element (as well as 0) would solve $A \underline{x}=0$. Thus, by the rank-nullity theorem, $\operatorname{dim} C(A)=n$ as desired.

3(b) (3 points): (i) Find the matrices A_{1}, A_{2} of the orthogonal projections $P_{V_{j}}, j=1,2$, to $V_{1}=\operatorname{Span}\left\{(1,1,1)^{\mathrm{T}}\right\}$ and $V_{2}=\operatorname{Span}\left\{(1,-1,0)^{\mathrm{T}}\right\}$ in \mathbb{R}^{3}. (ii) Show that the matrix of the orthogonal projection P_{V} to $\left.V=\operatorname{Span}\left\{(1,1,1)^{\mathrm{T}},(1,-1,0)^{\mathrm{T}}\right)\right\}$ is $A_{1}+A_{2}$.
Hint for (ii): Note that $(1,1,1)^{\mathrm{T}}$ and $(1,-1,0)^{\mathrm{T}}$ are orthogonal.
Solution: The orthogonal projection of a vector \underline{x} to the span of a non-zero vector \underline{v} is $P_{\text {span }} \underline{w}=$ $\frac{v \cdot x}{\|\underline{v}\|^{2}} \underline{v}$, i.e. explicitly the i th coordinate of $P_{\text {span } \underline{v}} \underline{e}_{j}$ is $P_{\text {span } \underline{v}} \underline{e}_{j}=\frac{v \cdot e_{j}}{\|\underline{v}\|^{2}} v_{i}=\frac{v_{j}}{\|\underline{v}\|^{2}} v_{i}$, which says exactly that the $i j$ th entry of the matrix of the projection is $\frac{v_{i} v_{j}}{\|\underline{v}\|^{2}}$. Concretely, this gives

$$
A_{1}=\frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), A_{2}=\frac{1}{2}\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We claim that the orthogonal projection to $V=\operatorname{Span}\left\{\underline{v}_{1}, \underline{v}_{2}\right\}$ is $P_{\operatorname{span} \underline{v}_{1}}+P_{\operatorname{span} \underline{v}_{2}}$. Indeed, suppose $\underline{x} \in \mathbb{R}^{3}$; we know that $\underline{x}=\underline{x}^{\|}+\underline{x}^{\perp}$ with $x^{\|} \in V$ and $x^{\perp} \in V^{\perp}$, the decomposition of \underline{x} is unique, and $P_{V} \underline{x}=\underline{x} \|$. Now, note that $P_{\text {span }} \underline{v}_{1} \underline{x}+P_{\text {span }} \underline{v}_{2} \underline{x} \in \operatorname{Span}\left\{\underline{v}_{1}\right\}+\operatorname{Span}\left\{\underline{v}_{2}\right\}=\operatorname{Span}\left\{\underline{v}_{1}, \underline{v}_{2}\right\}=V$, so it suffices to show that $\underline{x}-\left(P_{\operatorname{span} \underline{v}_{1} \underline{x}}+P_{\text {span } \underline{v}_{2}} \underline{x}\right) \in V^{\perp}$. But by Problem 2(a)/the lecture/book, this is equivalent to asking that $\left(\underline{x}-\left(P_{\operatorname{span} \underline{v}_{1}} \underline{x}+P_{\operatorname{span} \underline{v}_{2}} \underline{x}\right)\right) \cdot \underline{v}_{j}=0, j=1,2$. We consider $j=1 ; j=2$ is similar. Then $\left(\underline{x}-P_{\text {span }} \underline{v}_{1} \underline{x}\right) \cdot \underline{v}_{1}=0$ because $P_{\text {span }} \underline{v}_{1}$ is orthogonal projection to $\operatorname{span}\left\{v_{1}\right\}$ so $\underline{x}-P_{\text {span } \underline{v}_{1} \underline{x}} \in \operatorname{span}\left\{v_{1}\right\}^{\perp}$. On the other hand, $P_{\text {span } \underline{v}_{2}} \underline{x} \cdot \underline{v}_{1}=0$ since $P_{\text {span }} \underline{v}_{2} \underline{x} \in$ $\operatorname{span}\left\{\underline{v}_{2}\right\}$, and $\underline{v}_{2} \cdot \underline{v}_{1}=0$. In summary, $\left(\underline{x}-\left(P_{\text {span }} \underline{v}_{1} \underline{x}+P_{\text {span }} \underline{v}_{2} \underline{x}\right)\right) \cdot \underline{v}_{j}=0, j=1,2$, proving that $\underline{x}-\left(P_{\operatorname{span} \underline{v}_{1} \underline{x}}+P_{\text {span } \underline{v}_{2}} \underline{x}\right) \in V^{\perp}$, so $P_{V} \underline{x}=P_{\operatorname{span} \underline{v_{1}} \underline{x}}+P_{\operatorname{span} \underline{v}_{2}} \underline{x}$. Correspondingly, the matrix of the orthogonal projection to V is

$$
A=A_{1}+A_{2}=\left(\begin{array}{ccc}
\frac{5}{6} & \frac{-1}{6} & \frac{1}{3} \\
\frac{-1}{6} & \frac{5}{6} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right) .
$$

4 (6 points): Find (i) rref A (showing all row operations), (ii) a basis for the null space $N(A)$, (iii) a basis for the column space of A and (iv) $\operatorname{dim} N\left(A^{\mathrm{T}}\right)$, if

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 3 & 1 & 1 \\
-1 & -2 & -2 & 0 & 1 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

Solution: (i)
$\left(\begin{array}{ccccc}1 & 2 & 3 & 1 & 1 \\ -1 & -2 & -2 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2\end{array}\right) r_{2} \mapsto r_{2}+r_{1}\left(\begin{array}{ccccc}1 & 2 & 3 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 0 & 2\end{array}\right) r_{2} \leftrightarrow r_{3}\left(\begin{array}{ccccc}1 & 2 & 3 & 1 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 2\end{array}\right)$
$r_{1} \mapsto r_{1}-3 r_{3}\left(\begin{array}{ccccc}1 & 2 & 0 & -2 & -5 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 2\end{array}\right) r_{1} \mapsto r_{1}-2 r_{2}\left(\begin{array}{ccccc}1 & 0 & 0 & -2 & -9 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 2\end{array}\right)$
(ii)

$$
\begin{aligned}
\operatorname{rref} A \underline{x}=\underline{0} & \Longleftrightarrow\left(x_{1}=2 x_{4}+9 x_{5}, x_{2}=-2 x_{5}, x_{3}=-x_{4}-2 x_{5}\right) \\
& \Longleftrightarrow \underline{x}=x_{4}(2,0,-1,1,0)^{\mathrm{T}}+x_{5}(9,-2,-2,0,1)^{\mathrm{T}}
\end{aligned}
$$

with x_{4}, x_{5} arbitrary, so $N(A)=N(\operatorname{rref} A)=\operatorname{span}\left\{(2,0,-1,1,0)^{\mathrm{T}},(9,-2,-2,0,1)^{\mathrm{T}}\right\}$, and these two vectors are indeed linearly independent (by inspection of the last two components, or the general result from lecture), so they give a basis for $N(A)$.
(iii) The pivot columns of ref A are the first, second and third columns, so from lecture a basis for $C(A)$ is obtained by taking the first, second and third columns of A; that is, a basis for $C(A)$ is $(1,-1,0)^{\mathrm{T}},(2,-2,1)^{\mathrm{T}},(3,-2,0)^{\mathrm{T}}$.
(iv) $N\left(A^{\mathrm{T}}\right)$, which is a subspace of \mathbb{R}^{3}, is the orthocomplement of $C(A)$, and the sum of the dimensions of a subspace and its orthocomplement is that of the total space. Since $\operatorname{dim} C(A)=3$, $\operatorname{dim} N\left(A^{\mathrm{T}}\right)=\operatorname{dim} \mathbb{R}^{3}-\operatorname{dim} C(A)=0$, and thus $N\left(A^{\mathrm{T}}\right)=\{0\}$.

