Mathematics Department Stanford University
Math 51H Mid-Term 1

October 13, 2015

Unless otherwise indicated, you can use results covered
in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages

Note: work sheets are provided for your convenience, but will not be graded
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1 (a) (3 points): (i) Give the e, N definition of “lim a,, = ¢,” where {ay, }n=12,... is a given sequence
in R and £ € R, and (ii) use your definition to prove that if {ay}n—=12 . converges to ¢ # 0, then
there exists N such that |a,| > |¢|/2 for n > N.

Note for (ii): You may not use any of our limit theorems to prove (ii), only the definition of the limit, and properties
of the reals.

Solution: lima, = ¢ means that for each € > 0 there is N such that |a, — ¢| < e for all n > N.

Now suppose that lima, = ¢, £ # 0. Then there exists N such that for n > N, |a, — €] < |£|/2;
here we use that € = [¢|/2 > 0 since £ # 0. Then for n > N, |a,| = |(an, — £) + €| > |€] — |an — {|
by the triangle ineqality (use = an, y = € — an, so |z +y| < |z|+ |y| is [4| < |an| + |€ — an], and
rearrange). Thus, for n > N, |a,| > |£| — |[¢|/2 = |¢]/2, as desired.

1(b) (3 points): Suppose that {a,}5°; is a bounded sequence. Let s = sup{a, : n > k},
k € NT, ie. s; is the sup of all but the first £ — 1 elements of the original sequence. Show that
lim s, exists.

Note: You should in particular explain why s itself exists. One writes lim sup a,, = lim si; this gives a measure how
large a, can be for large n.

First note that as {a, : n >k} C {a, : n € Nt} and the latter is bounded by assumption, so
is the former. Moreover, the former is non-empty as aj is in it, thus its supremum exists by the
completeness property of the reals.

We claim that {s}72, is a decreasing sequence and it is bounded below, and thus by the theorem
from the lecture/book/HW, it converges. To see that s; > sp41, note that with Sy, = {a, : n > k},
Sk+1 C Sg. Thus, any upper bound for Sy is an upper bound for Sk, in particular s = sup Sk
is such. Since sx41 = sup Si+1 is the least upper bound for Sii1, we have sp11 < sg, as desired.
Now, to see that {s;}72 is bounded below, let C' be a lower bound for Sy = {a, : n € Nt} so
an > C for all n. Thus, for every k, ap € S shows that s > ar > C so C'is a lower bound for the
sequence {s;}7°,. As already explained, this completes the proof of the convergence of {s;}2° ;.



Name: Page 2/4

2(a) (3 points): (i) Give the definition of the orthocomplement V1 of a subspace V of an
inner product space Z (if you wish, you way assume Z = R™ with usual inner product) and (ii)
show that if {vy,..., v} is a basis of a subspace V of Z (again Z = R™ may be assumed), then
Vi={weZ: w-v;=0, j=1,2,...,k}.

Solution: The orthocomplement V= is the set
Vi={weZ: YoeV,w -v=0}

note that V= is a subspace of Z.
Let {v1,...,v;} be a basis for V. We now show that

Vi={weZ: w-v;j=0, j=1,2,....k}.

Indeed, certainly if w € V- then w - v; = 0 for all j, giving the containment C. Conversely, if
w-v; = 0 for all 7, then w - E?:l cjv; = 0 for all ¢; € R by the linearity of the inner product in
its second slot. But any v € V' can be written as v = Z§:1
w-v=0forall v € V, thus w € V. This shows the containment O, and thus the claimed equality.

c;jv; since the v; form a basis of V, so

2(b) (4 points): Suppose V' is a vector space (if you wish you may assume that it is a subspace of
R™), v1,...,vx € Vand V = span{vy, ..., v }. Show that there is a sub-collection {v;, , vs,, ..., 4 },
i1 <ip < ...<1 (possibly { = 0), such that {v,,vs,,...,v;} is a basis for V.

Hint for (b): Analogously to the proof of the basis theorem, consider a minimal size subcollection that spans V, or a
maximal size subcollection which is linearly independent.

Solution: Let

S={le{0,1,...k}: Fiy <ip <...<iqs.t. span{v;,, vi,,...,v;} =V}

Then k € S since i = j for all j = 1,...,k gives a spanning set, so S is a non-empty set of positive
integers. Correspondingly it has a smallest element, call it [. Then there exists i1 < ia < ... < 4
such that span{v;,, vi,,...,v;,} = V. We claim that {v;,,v;,,...,v;} is a basis of V; since it spans,

we just need to show it is linearly independent. Note that if [ = 0, the collection is the empty
collection, and is thus linearly independent by definition, and V' = {0}. So suppose | > 1, and
{vi,,Vig, ..., v;} is not linearly independent. Then as shown in lecture/book there exists m such
that v;,, is a linear combination of the remaining v; i Vi, = Z#m CjVi; for some scalars c¢j. In
particular, any vector v in the span of {v;,,vi,,...,v;}, so v = Zf«:1 d;, v;, for some scalars d;,, is
also in the span of the remaining v;; (with v;,, dropped), by substituting in the linear combination
Vi = D2 CjVi; O v = Zizl d;,v;,. Thus, [ -1 € S since the remaining [ — 1 vectors v;; satisfy
all requirements for [ — 1 to be in S. But this contradicts that [ is the smallest element of S.
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3(a) (3 points): (i) State the rank nullity theorem. (ii)-(iii): Suppose A is an m x n matrix and
C(A) = R™. (ii) Show that m < n. (iii) If in addition Az = b has a unique solution for every
b € R™, show that m = n.

Solution: (i) The rank nullity theorem is that for an m x n matrix A, dim N(A) + dim C(A)
Alternatively, for a linear map 7' : V. — W with V finite dimensional, dimV = dim N(T
dimRan(7"). (ii) By the rank-nullity theorem, dim C(A) + dim N(A) = n. Since dim N(A)
this means dim C'(A4) < n. So, if C(A) = R™, so dim C(A) = m, we conclude that m < n. (iii) If
Az = b has a unique solution for every b € R™ then N(A) = {0}; otherwise any non-zero element
(as well as 0) would solve Az = 0. Thus, by the rank-nullity theorem, dim C'(A) = n as desired.
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3(b) (3 points): (i) Find the matrices A, Az of the orthogonal projections Py, j = 1,2, to
Vi = Span{(1,1,1)"} and V5 = Span{(1, —1,0)"} in R3. (ii) Show that the matrix of the orthogonal
projection Py to V = Span{(1,1,1)",(1,—-1,0)")} is A1 + As.

Hint for (ii): Note that (1,1,1)T and (1, —1,0)T are orthogonal.

Solution: The orthogonal projection of a vector x to the span of a non-zero vector v is Pspan T =
ﬁy, i.e. explicitly the ith coordinate of Pipanve€j is Pspanv€j = ﬁvl = ”Zﬁvi, which says exactly

that the 7jth entry of the matrix of the projection is ﬁ’;”ﬁg Concretely, this gives

1 111 1 -1
A]_Zg ]. 1 1 ,A2:§ —1 1
111 0 0

—_

0
0
0

We claim that the orthogonal projection to V' = Span{vi, va} is Pspan v, + Pspanv,- Indeed, suppose
2z € R3; we know that z = 2l + 2+ with z!l € V and 2t € V1, the decomposition of z is unique,
and Pyz = z!l. Now, note that Pipanv:Z + Pspan v, € Span{v;} + Span{va} = Span{vi,v2} =V,
so it suffices to show that o — (Pspan v, & + Pspanv,2) € V. But by Problem 2(a)/the lecture/book,
this is equivalent to asking that (z — (Pipanv,Z + Pspanv.)) - v; = 0, j = 1,2. We consider
j =1; j =2 is similar. Then ( — Pspanv, ) - v1 = 0 because Pipany, is orthogonal projection to
span{vi} so0 & — Pspanv, T € span{v;}*+. On the other hand, Pipan v, - v1 = 0 since Pipanp,Z €
span{va}, and vy - v1 = 0. In summary, (£ — (Pspanv, £ + Pspanv.2)) - v = 0, j = 1,2, proving that
T — (Pspanv:Z + Pspanv.Z) € VL so Pz = Pipan v, Z + Pipanv,z. Correspondingly, the matrix of
the orthogonal projection to V is

—_

A=A+ A=

|
i | oien
w\»—m\m"
COJ QO =L
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4 (6 points): Find (i) rref A (showing all row operations), (ii) a basis for the null space N(A),
iii) a basis for the column space of A and (iv) dim N(AT), if
1 2 3 11
A= -1 -2 -2 0 1
0 1 0 0 2

Solution: (i)

1 2 3 11 1 2 31
-1 -2 -2 0 1 |re—=ra+ri | 0 0 1 1
0 1 0 0 2 0100

r1 1] —3r3 1 20
010 O 2
0 01

1
2
2
-2 =5\ ri—=r—2r
1 2

(ii)
rref Ay =0 < (1’1 =224+ 95,190 = —2T5, 13 = —T4 — 2.%'5)

= z=14(2,0,—1,1,0)" 4+ z5(9, -2, —2,0,1)"

with x4, x5 arbitrary, so N(A) = N(rref A) = span{(2,0,—1,1,0),(9,—-2,—2,0,1)"}, and these
two vectors are indeed linearly independent (by inspection of the last two components, or the
general result from lecture), so they give a basis for N(A).

(iii) The pivot columns of rref A are the first, second and third columns, so from lecture a basis for
C(A) is obtained by taking the first, second and third columns of A; that is, a basis for C(A) is
(17 _17 O)Tv (27 _27 1)T7 (37 _2a O)T

(iv) N(AT), which is a subspace of R3, is the orthocomplement of C(A), and the sum of the
dimensions of a subspace and its orthocomplement is that of the total space. Since dim C'(A) = 3,
dim N(AT) = dim R3 — dim C(A) = 0, and thus N(AT) = {0}.
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