Mathematics Department Stanford University Math 51H Mid-Term 1

October 14, 2014

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded

Q. 1	
Q.2	
Q.3	
Q. 4	
$\mathrm{~T} / 25$	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

1 (a) (3 points): (i) Give the ε, N definition of " $\lim a_{n}=\ell$," where $\left\{a_{n}\right\}_{n=1,2, \ldots}$ is a given sequence in \mathbb{R} and $\ell \in \mathbb{R}$, and (ii) use your definition to prove that if $\left\{a_{n}\right\}_{n=1,2, \ldots,},\left\{b_{n}\right\}_{n=1,2, \ldots}$ satisfy $\lim a_{n}=\ell, \lim b_{n}=m$, then $\lim \left(a_{n}-b_{n}\right)=\ell-m$.
Note for (ii): You may not use any of our limit theorems to prove (ii), only the definition of the limit, and properties of the reals.

1(b) (3 points): Suppose that S is a bounded non-empty subset of \mathbb{R} with the property that $x, y \in S, x<z<y$ imply that $z \in S$. Let $a=\inf S, b=\sup S$. Show that S must be one of the intervals $(a, b),(a, b],[a, b),[a, b]$ (with only the last possibility if $a=b$).
Hint for (b): The conclusion is equivalent to $a<z<b$ implying that $z \in S$ together with $z \notin[a, b]$ implying $z \notin S$.

2(a) (3 points): (i) Give the definition of a collection $\underline{v}_{1}, \ldots, \underline{v}_{k}$ of vectors in \mathbb{R}^{n} being linearly independent, and (ii) if $\underline{v}_{1}, \ldots, \underline{v}_{k}$ are non-zero mutually orthogonal (i.e. $\underline{v}_{i} \cdot \underline{v}_{j}=0 \forall i \neq j$) vectors in \mathbb{R}^{n}, prove that $\underline{v}_{1}, \ldots, \underline{v}_{k}$ are linearly independent.

2(b) (4 points): Suppose that V is a non-trivial subspace of \mathbb{R}^{n}. Show that there is an orthogonal basis of V, i.e. that there is a basis $\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$ for V with $\underline{v}_{i} \cdot \underline{v}_{j}=0$ if $i \neq j$. (You may assume the result of part (a) even if you have not proved it.)
Hint for (b): As in the proof of the basis theorem, consider a maximum size set of non-zero mutually orthogonal vectors; you need to show along the way that this exists. Orthocomplements may be useful in proving the spanning property.

3(a) (3 points): Suppose A is an $n \times n$ matrix and $\underline{b} \in \mathbb{R}^{n}$. Show that if $C(A)=\mathbb{R}^{n}$ then that $A \underline{x}=\underline{b}$ has a unique solution for each $\underline{b} \in \mathbb{R}^{n}$. (You need to show both existence and uniqueness.) Hint: Use the rank/nullity theorem.

3(b) (3 points): Suppose that V, W are subspaces of \mathbb{R}^{n} and $V \subset W$. Show that if $\operatorname{dim} V=\operatorname{dim} W$ then $V=W$.

4 (6 points): Find (i) rref A (showing all row operations), (ii) a basis for the null space $N(A)$ and (iii) a basis for the column space of A, if

$$
A=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 3 \\
0 & 2 & 4 & 1 & -1 \\
-1 & 0 & 0 & 1 & 2
\end{array}\right)
$$

