Mathematics Department Stanford University Math 51H Mid-Term 1

October 14, 2014

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages

Note: work sheets are provided for your convenience, but will not be graded

Q.1	
_Q.2	
Q.3	
Q.4	
T/25	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

1 (a) (3 points): (i) Give the ε , N definition of "lim $a_n = \ell$," where $\{a_n\}_{n=1,2,\ldots}$ is a given sequence in \mathbb{R} and $\ell \in \mathbb{R}$, and (ii) use your definition to prove that if $\{a_n\}_{n=1,2,\ldots}, \{b_n\}_{n=1,2,\ldots}$ satisfy $\lim a_n = \ell$, $\lim b_n = m$, then $\lim(a_n - b_n) = \ell - m$.

Note for (ii): You may not use any of our limit theorems to prove (ii), only the definition of the limit, and properties of the reals.

Solution: $\lim a_n = \ell$ means that for each $\varepsilon > 0$ there is N such that $|a_n - \ell| < \varepsilon$ for all $n \ge N$.

Now, suppose $\varepsilon > 0$. Since $\lim a_n = \ell$, applying the definition with $\varepsilon/2 > 0$ means that there is N_1 such that $n \ge N_1$ implies $|a_n - \ell| < \varepsilon/2$. Similarly, $\lim b_n = m$ means that there is N_2 such that $|b_n - m| < \varepsilon/2$ for $n \ge N_2$. Thus, for $n \ge N = \max(N_1, N_2)$,

$$|(a_n - b_n) - (\ell - m)| = |(a_n - \ell) + (m - b_n)| \le |a_n - \ell| + |m - b_n| < \varepsilon,$$

proving the conclusion.

1(b) (3 points): Suppose that S is a bounded non-empty subset of \mathbb{R} with the property that $x, y \in S, x < z < y$ imply that $z \in S$. Let $a = \inf S, b = \sup S$. Show that S must be one of the intervals (a, b), (a, b], [a, b), [a, b] (with only the last possibility if a = b).

Hint for (b): The conclusion is equivalent to a < z < b implying that $z \in S$, together with $z \notin [a, b]$ implying $z \notin S$.

Solution: Suppose a < z < b. As z > a, z is not a lower bound for S, i.e. there exists some $x \in S$ such that x < z. Similarly, as z < b, z is not an upper bound for S so there exists some $y \in S$ such that z < y. Thus, x < z < y, $x, y \in S$, so $z \in S$. Thus, $(a, b) \subset S$.

Now, if z < a then $z \notin S$ since a is a lower bound for S, and similarly if z > b then $z \notin S$ since b is an upper bound for S. Thus $(-\infty, a) \cup (b, +\infty) \subset S^c = \mathbb{R} \setminus S$.

As $\mathbb{R} = (-\infty, a) \cup \{a\} \cup (a, b) \cup \{b\} \cup (b, \infty)$, the only question is whether a and b are in S; listing the four possibilities (only two if a = b) gives the four intervals (only one if a = b as we assumed that S was non-empty).

2(a) (3 points): (i) Give the definition of a collection $\underline{v}_1, \ldots, \underline{v}_k$ of vectors in \mathbb{R}^n being linearly independent, and (ii) if $\underline{v}_1, \ldots, \underline{v}_k$ are non-zero mutually orthogonal (i.e. $\underline{v}_i \cdot \underline{v}_j = 0 \forall i \neq j$) vectors in \mathbb{R}^n , prove that $\underline{v}_1, \ldots, \underline{v}_k$ are linearly independent.

Solution: A collection $\underline{v}_1, \ldots, \underline{v}_k$ of vectors in \mathbb{R}^n is linearly independent if there is no nontrivial linear combination of them which is 0, i.e. $\sum_{j=1}^k c_j \underline{v}_j = 0$ implies $c_j = 0$ for all j. (ii) $\sum_{j=1}^k c_j \underline{v}_j = \underline{0} \Rightarrow 0 = \underline{v}_i \cdot (\sum_{j=1}^k c_j \underline{v}_j) \Rightarrow 0 = \sum_{j=1}^k c_j v_i \cdot v_j = c_i ||v_i||^2 \Rightarrow c_i = 0$ for each $i = 1, \ldots, k$, where we used the fact that $v_i \cdot v_j = 0$ if $j \neq i$ and $= ||\underline{v}_i||^2 \neq 0$ if j = i.

2(b) (4 points): Suppose that V is a non-trivial subspace of \mathbb{R}^n . Show that there is an orthogonal basis of V, i.e. that there is a basis $\{\underline{v}_1, \ldots, \underline{v}_k\}$ for V with $\underline{v}_i \cdot \underline{v}_j = 0$ if $i \neq j$. (You may assume the result of part (a) even if you have not proved it.)

Hint for (b): As in the proof of the basis theorem, consider a maximum size set of non-zero mutually orthogonal vectors; you need to show along the way that this exists. Orthocomplements may be useful in proving the spanning property.

Solution: If $\{\underline{v}_1, \ldots, \underline{v}_k\}$ is any collection of mutually orthogonal non-zero vectors, it is linearly independent by part (a), so by the linear dependence lemma, $k \leq n$. Moreover, as V is non-trivial, there exists a non-zero vector \underline{v} in it; then $\{\underline{v}\}$ is an orthogonal collection (a set with one non-zero element). Now let

 $S = \{k : \exists \{\underline{v}_1, \dots, \underline{v}_k\}$ mutually orthogonal non-zero in $V\}.$

Then S is a non-empty set of positive integers, bounded above by n, thus it has a maximal element; let $k = \max S$. Let $\{\underline{v}_1, \ldots, \underline{v}_k\}$ be mutually orthogonal in V; these exist by the very definition of k. Now let $W = \operatorname{span}\{\underline{v}_1, \ldots, \underline{v}_k\} + V^{\perp}$, with V^{\perp} the orthocomplement of V in \mathbb{R}^n . Then $W \oplus W^{\perp} = \mathbb{R}^n$. If $W^{\perp} \neq \{0\}$ then there exists $\underline{x} \neq 0$, $\underline{x} \in W^{\perp}$, so \underline{x} is orthogonal to all \underline{v}_j , and \underline{x} is orthogonal to all elements of V^{\perp} . The latter means $\underline{x} \in (V^{\perp})^{\perp} = V$. Then $\{\underline{v}_1, \ldots, \underline{v}_k, \underline{x}\}$ are k+1 mutually orthogonal non-zero vectors in V, so $k+1 \in S$, which contradicts our choice of k. Thus, $W^{\perp} = \{0\}$, so $W = \mathbb{R}^n$, i.e. $\operatorname{span}\{\underline{v}_1, \ldots, \underline{v}_k\} + V^{\perp} = \mathbb{R}^n$. Notice that the first summand is a subspace of V, so any $\underline{v} \in V$ can be written as $\underline{y} + \underline{z}, \underline{y} \in \operatorname{span}\{\underline{v}_1, \ldots, \underline{v}_k\} \subset V, \underline{z} \in V^{\perp}$. Since there is a unique way of writing any element of \mathbb{R}^n , in particular any element \underline{v} of V as a vector in V plus one in V^{\perp} , and as $\underline{v} = \underline{v} + 0$ is such a decomposition, we conclude that $\underline{v} = \underline{y} \in \operatorname{span}\{\underline{v}_1, \ldots, \underline{v}_k\}$, so $V = \operatorname{span}\{\underline{v}_1, \ldots, \underline{v}_k\}$. Since $\{\underline{v}_1, \ldots, \underline{v}_k\}$ are linearly independent, this means that they form a basis of V, as claimed.

Alternative (simpler) argument using orthocomplements within V: Find $\underline{v}_1, \ldots, \underline{v}_k$ as above, but let $W = \operatorname{span}\{\underline{v}_1, \ldots, \underline{v}_k\}$. Now, $V = W \oplus W_V^{\perp}$ with $W_V^{\perp} = \{\underline{v} \in V : \underline{v} \cdot \underline{w} = 0 \forall \underline{w} \in W\}$ the orthocomplement of W in V, so W = V if and only if $W_V^{\perp} = \{0\}$. But if $W_V^{\perp} \neq \{0\}$ then there is $\underline{x} \in W$ such that $x \neq 0$, and then $\{\underline{v}_1, \ldots, \underline{v}_k, \underline{x}\}$ are k + 1 mutually orthogonal non-zero vectors in V, so $k + 1 \in S$, which contradicts our choice of k. So $W_V^{\perp} = 0$, and thus $V = \operatorname{span}\{\underline{v}_1, \ldots, \underline{v}_k\}$. Since $\{\underline{v}_1, \ldots, \underline{v}_k\}$ are linearly independent, this means that they form a basis of V, as claimed. **3(a) (3 points):** Suppose A is an $n \times n$ matrix and $\underline{b} \in \mathbb{R}^n$. Show that if $C(A) = \mathbb{R}^n$ then that $A\underline{x} = \underline{b}$ has a unique solution for each $\underline{b} \in \mathbb{R}^n$. (You need to show both existence and uniqueness.) Hint: Use the rank/nullity theorem.

Solution: For any $\underline{x} \in \mathbb{R}^n$, $A\underline{x} = \sum_{j=1}^n x_j \underline{\alpha}_j$, where $\underline{\alpha}_j$ is the *j*'th column of *A*. Thus $\{A\underline{x} : \underline{x} \in \mathbb{R}^n\}$ = span $\{\underline{\alpha}_1, \ldots, \underline{\alpha}_n\} = C(A)$, so $\underline{b} \in \{A\underline{x} : \underline{x} \in \mathbb{R}^n\} \iff \underline{b} \in C(A)$. Correspondingly, if $C(A) = \mathbb{R}^n$, then $A\underline{x} = \underline{b}$ has a solution for all $\underline{b} \in \mathbb{R}^n$.

If $C(A) = \mathbb{R}^n$ then the rank/nullity theorem tells us that the dimension of N(A) is 0, i.e. $N(A) = \{0\}$. But, if $A\underline{x} = \underline{b}$ and $Ay = \underline{b}$ then $A(\underline{x} - \underline{y}) = A\underline{x} - Ay = \underline{b} - \underline{b} = 0$, so $\underline{x} - \underline{y} \in N(A)$. So $N(A) = \{0\}$ gives $\underline{x} = \underline{y}$, which is the desired uniqueness.

3(b) (3 points): Suppose that V, W are subspaces of \mathbb{R}^n and $V \subset W$. Show that if dim $V = \dim W$ then V = W.

Solution: If V is the trivial subspace of \mathbb{R}^n , then dim W = 0 and thus W is also the trivial subspace, completing the proof in this case.

If V is not the trivial subspace, then V has a basis $\{\underline{v}_1, \ldots, \underline{v}_k\}$. These are linearly independent and lie in W, thus by the basis theorem, applied to W, there exists a basis $\{\underline{w}_1, \ldots, \underline{w}_k, \ldots, \underline{w}_m\}$ of W with $m \ge k$ and with $\underline{w}_j = \underline{v}_j$ for $j \le k$. In particular, dim $W = m \ge k = \dim V$. Since we know dim $V = \dim W$, we have m = k, i.e. $\{\underline{v}_1, \ldots, \underline{v}_k\}$ is a basis of W as well. Thus, W is the span of these vectors, i.e. W = V. Name:

4 (6 points): Find (i) rref A (showing all row operations), (ii) a basis for the null space N(A) and (iii) a basis for the column space of A, if

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 3 \\ 0 & 2 & 4 & 1 & -1 \\ -1 & 0 & 0 & 1 & 2 \end{pmatrix}$$

Solution: (i)

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 3 \\ 0 & 2 & 4 & 1 & -1 \\ -1 & 0 & 0 & 1 & 2 \end{pmatrix}_{r_3 \mapsto r_3 + r_1} \begin{pmatrix} 1 & 1 & 0 & 0 & 3 \\ 0 & 2 & 4 & 1 & -1 \\ 0 & 1 & 0 & 1 & 5 \end{pmatrix} r_2 \mapsto r_2/2 \begin{pmatrix} 1 & 1 & 0 & 0 & 3 \\ 0 & 1 & 2 & 1/2 & -1/2 \\ 0 & 1 & 0 & 1 & 5 \end{pmatrix}$$
$$r_3 \mapsto r_3 - r_2 \begin{pmatrix} 1 & 1 & 0 & 0 & 3 \\ 0 & 1 & 2 & 1/2 & -1/2 \\ 0 & 0 & -2 & 1/2 & 11/2 \end{pmatrix} r_3 \mapsto -r_3/2 \begin{pmatrix} 1 & 1 & 0 & 0 & 3 \\ 0 & 1 & 2 & 1/2 & -1/2 \\ 0 & 0 & 1 & -1/4 & -11/4 \end{pmatrix}$$
$$r_1 \mapsto r_1 - r_2 \begin{pmatrix} 1 & 0 & -2 & -1/2 & 7/2 \\ 0 & 1 & 2 & 1/2 & -1/2 \\ 0 & 1 & 2 & 1/2 & -1/2 \\ 0 & 0 & 1 & -1/4 & -11/4 \end{pmatrix} r_1 \mapsto r_1 + 2r_3 \begin{pmatrix} 1 & 0 & 0 & -1 & -2 \\ 0 & 1 & 0 & 1 & 5 \\ 0 & 0 & 1 & -1/4 & -11/4 \end{pmatrix}$$

(ii)

$$\operatorname{rref} A\underline{x} = \underline{0} \iff \left(x_1 = x_4 + 2x_5, x_2 = -x_4 - 5x_5, x_3 = \frac{1}{4}x_4 + \frac{11}{4}x_5 \right)$$
$$\iff \underline{x} = x_4(1, -1, \frac{1}{4}, 1, 0)^{\mathrm{T}} + x_5(2, -5, \frac{11}{4}, 0, 1)^{\mathrm{T}}$$

with x_4, x_5 arbitrary, so $N(A) = N(\operatorname{rref} A) = \operatorname{span}\{(1, -1, \frac{1}{4}, 1, 0)^{\mathrm{T}}, (2, -5, \frac{11}{4}, 0, 1)^{\mathrm{T}}\}$, and these two vectors are indeed linearly independent (by inspection of the last two components, or the general result from lecture), so they give a basis for N(A).

(iii) The pivot columns of rref A are the first, second and third columns, so from lecture a basis for C(A) is obtained by taking the first, second and third columns of A; that is, a basis for C(A) is $(1,0,-1)^{\mathrm{T}}, (1,2,0)^{\mathrm{T}}, (0,4,0)^{\mathrm{T}}$.

work-sheet 1/2

•

work-sheet 2/2

•