Mathematics Department Stanford University Math 51H Mid-Term 1

October 14, 2014

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded

Q. 1	
Q.2	
Q.3	
Q. 4	
$\mathrm{~T} / 25$	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

1 (a) (3 points): (i) Give the ε, N definition of " $\lim a_{n}=\ell$," where $\left\{a_{n}\right\}_{n=1,2, \ldots}$ is a given sequence in \mathbb{R} and $\ell \in \mathbb{R}$, and (ii) use your definition to prove that if $\left\{a_{n}\right\}_{n=1,2, \ldots},\left\{b_{n}\right\}_{n=1,2, \ldots}$ satisfy $\lim a_{n}=\ell, \lim b_{n}=m$, then $\lim \left(a_{n}-b_{n}\right)=\ell-m$.
Note for (ii): You may not use any of our limit theorems to prove (ii), only the definition of the limit, and properties of the reals.

Solution: $\lim a_{n}=\ell$ means that for each $\varepsilon>0$ there is N such that $\left|a_{n}-\ell\right|<\varepsilon$ for all $n \geq N$.
Now, suppose $\varepsilon>0$. Since $\lim a_{n}=\ell$, applying the definition with $\varepsilon / 2>0$ means that there is N_{1} such that $n \geq N_{1}$ implies $\left|a_{n}-\ell\right|<\varepsilon / 2$. Similarly, $\lim b_{n}=m$ means that there is N_{2} such that $\left|b_{n}-m\right|<\varepsilon / 2$ for $n \geq N_{2}$. Thus, for $n \geq N=\max \left(N_{1}, N_{2}\right)$,

$$
\left|\left(a_{n}-b_{n}\right)-(\ell-m)\right|=\left|\left(a_{n}-\ell\right)+\left(m-b_{n}\right)\right| \leq\left|a_{n}-\ell\right|+\left|m-b_{n}\right|<\varepsilon,
$$

proving the conclusion.
1(b) (3 points): Suppose that S is a bounded non-empty subset of \mathbb{R} with the property that $x, y \in S, x<z<y$ imply that $z \in S$. Let $a=\inf S, b=\sup S$. Show that S must be one of the intervals (a, b), ($a, b],[a, b$), $[a, b]$ (with only the last possibility if $a=b$).
Hint for (b): The conclusion is equivalent to $a<z<b$ implying that $z \in S$, together with $z \notin[a, b]$ implying $z \notin S$.
Solution: Suppose $a<z<b$. As $z>a, z$ is not a lower bound for S, i.e. there exists some $x \in S$ such that $x<z$. Similarly, as $z<b, z$ is not an upper bound for S so there exists some $y \in S$ such that $z<y$. Thus, $x<z<y, x, y \in S$, so $z \in S$. Thus, $(a, b) \subset S$.
Now, if $z<a$ then $z \notin S$ since a is a lower bound for S, and similarly if $z>b$ then $z \notin S$ since b is an upper bound for S. Thus $(-\infty, a) \cup(b,+\infty) \subset S^{c}=\mathbb{R} \backslash S$.
As $\mathbb{R}=(-\infty, a) \cup\{a\} \cup(a, b) \cup\{b\} \cup(b, \infty)$, the only question is whether a and b are in S; listing the four possibilities (only two if $a=b$) gives the four intervals (only one if $a=b$ as we assumed that S was non-empty).

2(a) (3 points): (i) Give the definition of a collection $\underline{v}_{1}, \ldots, \underline{v}_{k}$ of vectors in \mathbb{R}^{n} being linearly independent, and (ii) if $\underline{v}_{1}, \ldots, \underline{v}_{k}$ are non-zero mutually orthogonal (i.e. $\underline{v}_{i} \cdot \underline{v}_{j}=0 \forall i \neq j$) vectors in \mathbb{R}^{n}, prove that $\underline{v}_{1}, \ldots, \underline{v}_{k}$ are linearly independent.

Solution: A collection $\underline{v}_{1}, \ldots, \underline{v}_{k}$ of vectors in \mathbb{R}^{n} is linearly independent if there is no nontrivial linear combination of them which is 0 , i.e. $\sum_{j=1}^{k} c_{j} \underline{v}_{j}=0$ implies $c_{j}=0$ for all j. (ii) $\sum_{j=1}^{k} c_{j} \underline{v}_{j}=\underline{0} \Rightarrow 0=\underline{v}_{i} \cdot\left(\sum_{j=1}^{k} c_{j} \underline{v}_{j}\right) \Rightarrow 0=\sum_{j=1}^{k} c_{j} v_{i} \cdot v_{j}=c_{i}\left\|v_{i}\right\|^{2} \Rightarrow c_{i}=0$ for each $i=1, \ldots, k$, where we used the fact that $v_{i} \cdot v_{j}=0$ if $j \neq i$ and $=\left\|\underline{v}_{i}\right\|^{2} \neq 0$ if $j=i$.

2(b) (4 points): Suppose that V is a non-trivial subspace of \mathbb{R}^{n}. Show that there is an orthogonal basis of V, i.e. that there is a basis $\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$ for V with $\underline{v}_{i} \cdot \underline{v}_{j}=0$ if $i \neq j$. (You may assume the result of part (a) even if you have not proved it.)
Hint for (b): As in the proof of the basis theorem, consider a maximum size set of non-zero mutually orthogonal vectors; you need to show along the way that this exists. Orthocomplements may be useful in proving the spanning property.

Solution: If $\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$ is any collection of mutually orthogonal non-zero vectors, it is linearly independent by part (a), so by the linear dependence lemma, $k \leq n$. Moreover, as V is non-trivial, there exists a non-zero vector \underline{v} in it; then $\{\underline{v}\}$ is an orthogonal collection (a set with one non-zero element). Now let

$$
S=\left\{k: \exists\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\} \text { mutually orthogonal non-zero in } V\right\} .
$$

Then S is a non-empty set of positive integers, bounded above by n, thus it has a maximal element; let $k=\max S$. Let $\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$ be mutually orthogonal in V; these exist by the very definition of k. Now let $W=\operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}+V^{\perp}$, with V^{\perp} the orthocomplement of V in \mathbb{R}^{n}. Then $W \oplus W^{\perp}=\mathbb{R}^{n}$. If $W^{\perp} \neq\{0\}$ then there exists $\underline{x} \neq 0, \underline{x} \in W^{\perp}$, so \underline{x} is orthogonal to all \underline{v}_{j}, and \underline{x} is orthogonal to all elements of V^{\perp}. The latter means $\underline{x} \in\left(V^{\perp}\right)^{\perp}=V$. Then $\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}, \underline{x}\right\}$ are $k+1$ mutually orthogonal non-zero vectors in V, so $k+1 \in S$, which contradicts our choice of k. Thus, $W^{\perp}=\{0\}$, so $W=\mathbb{R}^{n}$, i.e. $\operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}+V^{\perp}=\mathbb{R}^{n}$. Notice that the first summand is a subspace of V, so any $\underline{v} \in V$ can be written as $y+\underline{z}, \underline{y} \in \operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\} \subset V, \underline{z} \in V^{\perp}$. Since there is a unique way of writing any element of \mathbb{R}^{n}, in particular any element \underline{v} of V as a vector in V plus one in V^{\perp}, and as $\underline{v}=\underline{v}+0$ is such a decomposition, we conclude that $\underline{v}=y \in \operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$, so $V=\operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$. Since $\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$ are linearly independent, this means that they form a basis of V, as claimed.

Alternative (simpler) argument using orthocomplements within V : Find $\underline{v}_{1}, \ldots, \underline{v}_{k}$ as above, but let $W=\operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$. Now, $V=W \oplus W_{V}^{\perp}$ with $W_{V}^{\perp}=\{\underline{v} \in V: \underline{v} \cdot \underline{w}=0 \forall \underline{w} \in W\}$ the orthocomplement of W in V, so $W=V$ if and only if $W_{V}^{\perp}=\{0\}$. But if $W_{V}^{\perp} \neq\{0\}$ then there is $\underline{x} \in W$ such that $x \neq 0$, and then $\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}, \underline{x}\right\}$ are $k+1$ mutually orthogonal non-zero vectors in V, so $k+1 \in S$, which contradicts our choice of k. So $W_{V}^{\perp}=0$, and thus $V=\operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$. Since $\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$ are linearly independent, this means that they form a basis of V, as claimed.

3(a) (3 points): Suppose A is an $n \times n$ matrix and $\underline{b} \in \mathbb{R}^{n}$. Show that if $C(A)=\mathbb{R}^{n}$ then that $A \underline{x}=\underline{b}$ has a unique solution for each $\underline{b} \in \mathbb{R}^{n}$. (You need to show both existence and uniqueness.) Hint: Use the rank/nullity theorem.

Solution: For any $\underline{x} \in \mathbb{R}^{n}, A \underline{x}=\sum_{j=1}^{n} x_{j} \underline{\alpha}_{j}$, where $\underline{\alpha}_{j}$ is the j 'th column of A. Thus $\{A \underline{x}: \underline{x} \in$ $\left.\mathbb{R}^{n}\right\}=\operatorname{span}\left\{\underline{\alpha}_{1}, \ldots, \underline{\alpha}_{n}\right\}=C(A)$, so $\underline{b} \in\left\{A \underline{x}: \underline{x} \in \mathbb{R}^{n}\right\} \Longleftrightarrow \underline{b} \in C(A)$. Correspondingly, if $C(A)=\mathbb{R}^{n}$, then $A \underline{x}=\underline{b}$ has a solution for all $\underline{b} \in \mathbb{R}^{n}$.
If $C(A)=\mathbb{R}^{n}$ then the rank/nullity theorem tells us that the dimension of $N(A)$ is 0 , i.e. $N(A)=$ $\{0\}$. But, if $A \underline{x}=\underline{b}$ and $A y=\underline{b}$ then $A(\underline{x}-y)=A \underline{x}-A y=\underline{b}-\underline{b}=0$, so $\underline{x}-y \in N(A)$. So $N(A)=\{0\}$ gives $\underline{x}=y$, which is the desired uniqueness.

3(b) (3 points): Suppose that V, W are subspaces of \mathbb{R}^{n} and $V \subset W$. Show that if $\operatorname{dim} V=\operatorname{dim} W$ then $V=W$.

Solution: If V is the trivial subspace of \mathbb{R}^{n}, then $\operatorname{dim} W=0$ and thus W is also the trivial subspace, completing the proof in this case.
If V is not the trivial subspace, then V has a basis $\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$. These are linearly independent and lie in W, thus by the basis theorem, applied to W, there exists a basis $\left\{\underline{w}_{1}, \ldots, \underline{w}_{k}, \ldots, \underline{w}_{m}\right\}$ of W with $m \geq k$ and with $\underline{w}_{j}=\underline{v}_{j}$ for $j \leq k$. In particular, $\operatorname{dim} W=m \geq k=\operatorname{dim} V$. Since we know $\operatorname{dim} V=\operatorname{dim} W$, we have $m=k$, i.e. $\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$ is a basis of W as well. Thus, W is the span of these vectors, i.e. $W=V$.

4 (6 points): Find (i) rref A (showing all row operations), (ii) a basis for the null space $N(A)$ and (iii) a basis for the column space of A, if

$$
A=\left(\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 3 \\
0 & 2 & 4 & 1 & -1 \\
-1 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Solution: (i)

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 3 \\
0 & 2 & 4 & 1 & -1 \\
-1 & 0 & 0 & 1 & 2
\end{array}\right) r_{3} \mapsto r_{3}+r_{1}\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 3 \\
0 & 2 & 4 & 1 & -1 \\
0 & 1 & 0 & 1 & 5
\end{array}\right) r_{2} \mapsto r_{2} / 2\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 2 & 1 / 2 & -1 / 2 \\
0 & 1 & 0 & 1 & 5
\end{array}\right) \\
& r_{3} \mapsto r_{3}-r_{2}\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 2 & 1 / 2 & -1 / 2 \\
0 & 0 & -2 & 1 / 2 & 11 / 2
\end{array}\right) \quad r_{3} \mapsto-r_{3} / 2\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 2 & 1 / 2 & -1 / 2 \\
0 & 0 & 1 & -1 / 4 & -11 / 4
\end{array}\right) \\
& r_{1} \mapsto r_{1}-r_{2}\left(\begin{array}{ccccc}
1 & 0 & -2 & -1 / 2 & 7 / 2 \\
0 & 1 & 2 & 1 / 2 & -1 / 2 \\
0 & 0 & 1 & -1 / 4 & -11 / 4
\end{array}\right) \begin{array}{l}
r_{1} \mapsto r_{1}+2 r_{3} \\
r_{2} \mapsto r_{2}-2 r_{3}
\end{array}\left(\begin{array}{ccccc}
1 & 0 & 0 & -1 & -2 \\
0 & 1 & 0 & 1 & 5 \\
0 & 0 & 1 & -1 / 4 & -11 / 4
\end{array}\right)
\end{aligned}
$$

$$
\begin{align*}
\operatorname{rref} A \underline{x}=\underline{0} & \Longleftrightarrow\left(x_{1}=x_{4}+2 x_{5}, x_{2}=-x_{4}-5 x_{5}, x_{3}=\frac{1}{4} x_{4}+\frac{11}{4} x_{5}\right) \tag{ii}\\
& \Longleftrightarrow \underline{x}=x_{4}\left(1,-1, \frac{1}{4}, 1,0\right)^{\mathrm{T}}+x_{5}\left(2,-5, \frac{11}{4}, 0,1\right)^{\mathrm{T}}
\end{align*}
$$

with x_{4}, x_{5} arbitrary, so $N(A)=N(\operatorname{rref} A)=\operatorname{span}\left\{\left(1,-1, \frac{1}{4}, 1,0\right)^{\mathrm{T}},\left(2,-5, \frac{11}{4}, 0,1\right)^{\mathrm{T}}\right\}$, and these two vectors are indeed linearly independent (by inspection of the last two components, or the general result from lecture), so they give a basis for $N(A)$.
(iii) The pivot columns of rref A are the first, second and third columns, so from lecture a basis for $C(A)$ is obtained by taking the first, second and third columns of A; that is, a basis for $C(A)$ is $(1,0,-1)^{\mathrm{T}},(1,2,0)^{\mathrm{T}},(0,4,0)^{\mathrm{T}}$.

