Mathematics Department Stanford University Math 51H Mid-Term 1

October 15, 2013

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages Note: work sheets are provided for your convenience, but will not be graded

75 minutes

Q.1	
Q.2	
Q.3	
Q.4	
T/25	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

Name:___

1 (a) (3 points): Give the definition of " $\lim a_n = \ell$," where $\{a_n\}_{n=1,2,\dots}$ is a given sequence in \mathbb{R} and $\ell \in \mathbb{R}$, and use your definition to prove $\ell \ge 0$, assuming that the limit ℓ exists and that $a_n \ge 0 \forall n$.

(b) (3 points): Suppose that S is a non-empty subset of \mathbb{R} which is bounded above, and let $\alpha = \sup S$.

- (i) Prove that for each $\varepsilon > 0$ there is $x \in S$ with $x > \alpha \varepsilon$.
- (ii) Prove that there is a sequence $\{x_n\}_{n=1,2,\dots}$ with $x_n \in S$ for each n and $\lim x_n = \alpha$.

Name:_____

2 (a) (3 points): Suppose $\underline{a}, \underline{b}$ are distinct vectors in \mathbb{R}^n .

(i) Give the definition of "the line ℓ through \underline{a} parallel to $\underline{b} - \underline{a}$," and find the vector $\underline{v} \in \ell$ which is equi-distant from $\underline{a}, \underline{b}$ (i.e. $||\underline{v} - \underline{a}|| = ||\underline{v} - \underline{b}||$).

(ii) If \underline{v} is as in (i) and $\|\underline{a}\| = \|\underline{b}\|$, prove $\underline{v} \cdot (\underline{b} - \underline{a}) = 0$.

(b) (3 points): Prove that $2 |\underline{x} \cdot y| ||\underline{x}||^2 \le ||\underline{x}||^6 + ||y||^2$ for all vectors $\underline{x}, y \in \mathbb{R}^n$.

3 (a) (4 points): Suppose

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 2 & 1 & 1 & 3 & 1 \\ 0 & 0 & 1 & -1 & 1 \\ 1 & 1 & 2 & 0 & 2 \end{pmatrix}$$

Find (i) a basis for the null space N(A) of A (show all row operations!), and (ii) a basis for the column space C(A).

Make sure you justify your results by referring to the appropriate results from lecture.

3 (b) (3 points): Suppose $V \subset \mathbb{R}^n$ is a non-trivial subspace of dimension k. Give the proof that any k vectors $\underline{v}_1, \ldots, \underline{v}_k \in V$ which span V (i.e. $V = \text{span}\{\underline{v}_1, \ldots, \underline{v}_k\}$) must automatically be a basis for V.

Name:_____

4 (a) (3 points): Suppose A is an $m \times n$ matrix and $\underline{b} \in \mathbb{R}^m$. (i) Give the proof that $A\underline{x} = \underline{b}$ has at least one solution $\underline{x} \in \mathbb{R}^n \iff \underline{b} \in C(A)$, and (ii) In case m = n and $N(A) = \{\underline{0}\}$, prove that $A\underline{x} = \underline{b}$ has a solution for each $\underline{b} \in \mathbb{R}^n$.

Hint for (ii): Start by applying the rank/nullity theorem.

4 (b) (3 points): If V is a subspace of \mathbb{R}^n , give the definition of V^{\perp} . Prove (i) that V^{\perp} is a subspace, and (ii) that $V \cap V^{\perp} = \{\underline{0}\}$.

•

work-sheet 2/2

•