Mathematics Department Stanford University
 Math 51H Mid-Term 1

October 15, 2013

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded 75 minutes

Q. 1	
Q.2	
Q.3	
Q. 4	
T $/ 25$	

Name (Print Clearly): \qquad

I understand and accept the provisions of the honor code (Signed)

1 (a) (3 points): Give the definition of " $\lim a_{n}=\ell$," where $\left\{a_{n}\right\}_{n=1,2, \ldots}$ is a given sequence in \mathbb{R} and $\ell \in \mathbb{R}$, and use your definition to prove $\ell \geq 0$, assuming that the limit ℓ exists and that $a_{n} \geq 0 \forall n$.
(b) (3 points): Suppose that S is a non-empty subset of \mathbb{R} which is bounded above, and let $\alpha=\sup S$.
(i) Prove that for each $\varepsilon>0$ there is $x \in S$ with $x>\alpha-\varepsilon$.
(ii) Prove that there is a sequence $\left\{x_{n}\right\}_{n=1,2 \ldots}$... with $x_{n} \in S$ for each n and $\lim x_{n}=\alpha$.

Name: \qquad
2 (a) (3 points): Suppose $\underline{a}, \underline{b}$ are distinct vectors in \mathbb{R}^{n}.
(i) Give the definition of "the line ℓ through \underline{a} parallel to $\underline{b}-\underline{a}$," and find the vector $\underline{v} \in \ell$ which is equi-distant from $\underline{a}, \underline{b}$ (i.e. $\|\underline{v}-\underline{a}\|=\|\underline{v}-\underline{b}\|$).
(ii) If \underline{v} is as in (i) and $\|\underline{a}\|=\|\underline{b}\|$, prove $\underline{v} \cdot(\underline{b}-\underline{a})=0$.
(b) (3 points): Prove that $2|\underline{x} \cdot y|\|\underline{x}\|^{2} \leq\|\underline{x}\|^{6}+\|y\|^{2}$ for all vectors $\underline{x}, y \in \mathbb{R}^{n}$.

3 (a) (4 points): Suppose

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & 1 \\
2 & 1 & 1 & 3 & 1 \\
0 & 0 & 1 & -1 & 1 \\
1 & 1 & 2 & 0 & 2
\end{array}\right)
$$

Find (i) a basis for the null space $N(A)$ of A (show all row operations!), and (ii) a basis for the column space $C(A)$.
Make sure you justify your results by referring to the appropriate results from lecture.

3 (b) (3 points): Suppose $V \subset \mathbb{R}^{n}$ is a non-trivial subspace of dimension k. Give the proof that any k vectors $\underline{v}_{1}, \ldots, \underline{v}_{k} \in V$ which span V (i.e. $V=\operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$) must automatically be a basis for V.

Name: \qquad
4 (a) (3 points): Suppose A is an $m \times n$ matrix and $\underline{b} \in \mathbb{R}^{m}$. (i) Give the proof that $A \underline{x}=\underline{b}$ has at least one solution $\underline{x} \in \mathbb{R}^{n} \Longleftrightarrow \underline{b} \in C(A)$, and (ii) In case $m=n$ and $N(A)=\{\underline{0}\}$, prove that $A \underline{x}=\underline{b}$ has a solution for each $\underline{b} \in \mathbb{R}^{n}$.
Hint for (ii): Start by applying the rank/nullity theorem.

4 (b) (3 points): If V is a subspace of \mathbb{R}^{n}, give the definition of V^{\perp}. Prove (i) that V^{\perp} is a subspace, and (ii) that $V \cap V^{\perp}=\{\underline{0}\}$.
work-sheet $2 / 2$

