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1 (a) (3 points): Give the definition of “lim an = `,” where {an}n=1,2,... is a given sequence in

R and ` ∈ R, and use your definition to prove ` ≥ 0, assuming that the limit ` exists and that

an ≥ 0 ∀n.

Solution: lim an = ` means that for each ε > 0 there is N such that |an − `| < ε for all n ≥ N .

This says `− ε < an < `+ ε for all n ≥ N . Now if ` < 0 then we can take ε = −`, in which case the

above implies ∃N such that an < `− ` = 0 for all n ≥ N , contradicting the fact that an ≥ 0 ∀n.

(b) (3 points): Suppose that S is a non-empty subset of R which is bounded above, and let

α = supS.

(i) Prove that for each ε > 0 there is x ∈ S with x > α− ε.
(ii) Prove that there is a sequence {xn}n=1,2,... with xn ∈ S for each n and limxn = α.

Solution (i): If this fails for any ε > 0, then α− ε would be an upper bound for S, contradicting

the fact that α is the least upper bound.

Solution (ii): For each n = 1, 2, . . . we can use (i) with ε = 1/n, thus showing that there is xn ∈ S
with xn > α− 1/n. Then α− 1/n ≤ xn ≤ α and so the Sandwich Theorem gives limxn = α.
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2 (a) (3 points): Suppose a , b are distinct vectors in Rn.

(i) Give the definition of “the line ` through a parallel to b − a ,” and find the vector v ∈ ` which

is equi-distant from a , b (i.e. ‖ v − a ‖ = ‖ v − b ‖).
(ii) If v is as in (i) and ‖ a ‖ = ‖ b ‖, prove v · ( b − a ) = 0.

Solution (i): The line ` through a parallel to b − a is defined by ` = { a + t( b − a ) : t ∈ R}.
We want the mid-point of the part of the line joining a to b and this intuitively should be given

by taking t = 1
2 , i.e. v = a + 1

2( b − a ) = 1
2( a + b ). To check that this works, we calculate

v − a = 1
2( b − a ), whereas v − b = 1

2( a − b ) = −1
2( b − a ), so indeed ‖ v − a ‖ = ‖ v − b ‖.

Solution (ii): v ·( b− a ) = 1
2( b+ a )·( b− a ) = 1

2( b · b− a · a+ a · b− b · a ) = 1
2(‖ b ‖2−‖ a ‖2) = 0.

(b) (3 points): Prove that 2 |x · y | ‖x ‖2 ≤ ‖x ‖6 + ‖ y ‖2 for all vectors x , y ∈ Rn.

Solution: The Cauchy-Schwarz inequality says |x · y | ≤ ‖x ‖‖ y ‖, so ‖x ‖6 + ‖ y ‖2 − 2 |x ·
y | ‖x ‖2 ≥ ‖x ‖6 + ‖ y ‖2 − 2 ‖x ‖3‖y‖ = (‖x ‖3 − ‖ y ‖)2 ≥ 0.
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3 (a) (4 points): Suppose

A =


1 0 1 1 1

2 1 1 3 1

0 0 1 −1 1

1 1 2 0 2


Find (i) a basis for the null space N(A) of A (show all row operations!), and (ii) a basis for the

column space C(A).

Make sure you justify your results by referring to the appropriate results from lecture.

Solution: We compute the reduced row echelon form of A as follows:

r3 ↔ r4


1 0 1 1 1

2 1 1 3 1

1 1 2 0 2

0 0 1 −1 1

 r2 7→ r2 − 2r1
r3 7→ r3 − r1


1 0 1 1 1

0 1 −1 1 −1

0 1 1 −1 1

0 0 1 −1 1

 r3 7→ r3 − r2


1 0 1 1 1

0 1 −1 1 −1

0 0 2 −2 2

0 0 1 −1 1



r3 7→ r3/2

r4 7→ r4 − r3/2


1 0 1 1 1

0 1 −1 1 −1

0 0 1 −1 1

0 0 0 0 0

 r1 7→ r1 − r3
r2 7→ r2 + r3


1 0 0 2 0

0 1 0 0 0

0 0 1 −1 1

0 0 0 0 0


Thus x is a solution of Ax = 0 ⇐⇒ x3 = x4 − x5, x2 = 0, x1 = −2x4 ⇐⇒ x = (−2x4, 0, x4 −
x5, x4, x5)

T = x4(−2, 0, 1, 1, 0)T + x5(0, 0,−1, 0, 1)T, where x4, x5 are arbitrary reals, so the null

space is the subspace spanned by (−2, 0, 1, 1, 0)T and (0, 0,−1, 0, 1)T. Since (−2, 0, 1, 1, 0)T and

(0, 0,−1, 0, 1)T are l.i. (which can be justified either by a direct check or by the fact that we are

following the general method of lecture, which was shown always to yield l.i. vectors and hence a

basis for the null space), this is a 2 dimensional space and (−2, 0, 1, 1, 0)T and (0, 0,−1, 0, 1)T are

a basis.

(ii) In lecture we proved that if j1, . . . , jQ are the column numbers of the pivot columns of rref (A)

then the columns α j1 , . . . , α jQ of A are a basis for C(A). In this case we have Q = 3 and

j1, j2, j3 = 1, 2, 3 respectively, so the first 3 cols. of A are a basis for C(A).

3 (b) (3 points): Suppose V ⊂ Rn is a non-trivial subspace of dimension k. Give the proof that

any k vectors v 1, . . . , v k ∈ V which span V (i.e. V = span{ v 1, . . . , v k}) must automatically be a

basis for V .

Solution: Since v 1, . . . , v k are given to span V , we just have to show they are l.i. Suppose

on the contrary that they are l.d. Then from lecture at least one of them, say v j , is a linear

combination of the others. Thus v j =
∑

i 6=j ci v i for some constants ci, i 6= j. But then any

linear combination of v 1, . . . , v k can be rewritten as a linear combination of v i, i 6= j. Then

V = span{ v 1, . . . , v k} = span{vi : i 6= j}. But then a basis w 1, . . . , w k for V would consist of k

l.i. vectors in the span of the k − 1 vectors v i, i 6= j, contradicting the linear dependence lemma.
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4 (a) (3 points): Suppose A is an m × n matrix and b ∈ Rm. (i) Give the proof that Ax = b

has at least one solution x ∈ Rn ⇐⇒ b ∈ C(A), and (ii) In case m = n and N(A) = {0}, prove

that Ax = b has a solution for each b ∈ Rn.

Hint for (ii): Use the rank/nullity theorem.

Solution: (i) As we checked in lecture, Ax =
∑n

j=1 xj α j , where α j is the j’th column of

A, so ∃ x = (x1, . . . , xn)T with Ax = b ⇐⇒
∑n

j=1 xj α j = b . Thus there is a solution

of Ax = b if and only if some linear combination of the α j is equal to b , i.e. if and only if

b ∈ span{α 1, . . . , α n} = C(A).

(ii) If N(A) = {0} then the rank/nullity theorem tells us that the dimension of C(A) = n. That

is C(A) is a subspace of Rn of dimension n and hence it must be all of Rn because by a theorem

of lecture any k l.i. vectors in a k-dimensional subspace of Rn must be a basis for that subspace.

Thus C(A) = Rn and hence by part (i) Ax = b has a solution for all b ∈ Rn.

4 (b) (2 points): If V is a subspace of Rn, give the definition of V ⊥. Prove (i) that V ⊥ is a

subspace, and (ii) that V ∩ V ⊥ = {0}.

Solution: V ⊥ is the set of all vectors y ∈ Rn such that y · v = 0 for every v ∈ V .

(i) First note that (a) trivially 0 ∈ V ⊥, and (b) x , y ∈ V ⊥ ⇒ v ·(x+ y ) = v · x+ v · y = 0+0 = 0

for each v ∈ V , so x + y ∈ V ⊥. Finally (c) λ ∈ R and y ∈ V ⊥ ⇒ (λ y ) · v = λ( y · v ) = λ.0 = 0

for each v ∈ V , so λ y ∈ V ⊥. Thus V ⊥ has the required 3 properties, hence is a subspace.

(ii) w ∈ V ∩ V ⊥ ⇒ w ∈ V ⊥ ⇒ w · v = 0∀ v ∈ V . But w ∈ V , so then w · w = ‖w ‖2 = 0, so

w = 0.


