Mathematics Department Stanford University Math 51H Mid-Term 1

October 15, 2013

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages Note: work sheets are provided for your convenience, but will not be graded

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

1 (a) (3 points): Give the definition of " $\lim a_n = \ell$," where $\{a_n\}_{n=1,2,\dots}$ is a given sequence in \mathbb{R} and $\ell \in \mathbb{R}$, and use your definition to prove $\ell \ge 0$, assuming that the limit ℓ exists and that $a_n \ge 0 \forall n$.

Solution: $\lim a_n = \ell$ means that for each $\varepsilon > 0$ there is N such that $|a_n - \ell| < \varepsilon$ for all $n \ge N$. This says $\ell - \varepsilon < a_n < \ell + \varepsilon$ for all $n \ge N$. Now if $\ell < 0$ then we can take $\varepsilon = -\ell$, in which case the above implies $\exists N$ such that $a_n < \ell - \ell = 0$ for all $n \ge N$, contradicting the fact that $a_n \ge 0 \forall n$.

(b) (3 points): Suppose that S is a non-empty subset of \mathbb{R} which is bounded above, and let $\alpha = \sup S$.

(i) Prove that for each $\varepsilon > 0$ there is $x \in S$ with $x > \alpha - \varepsilon$.

(ii) Prove that there is a sequence $\{x_n\}_{n=1,2,\dots}$ with $x_n \in S$ for each n and $\lim x_n = \alpha$.

Solution (i): If this fails for any $\varepsilon > 0$, then $\alpha - \varepsilon$ would be an upper bound for S, contradicting the fact that α is the least upper bound.

Solution (ii): For each n = 1, 2, ... we can use (i) with $\varepsilon = 1/n$, thus showing that there is $x_n \in S$ with $x_n > \alpha - 1/n$. Then $\alpha - 1/n \le x_n \le \alpha$ and so the Sandwich Theorem gives $\lim x_n = \alpha$.

2 (a) (3 points): Suppose $\underline{a}, \underline{b}$ are distinct vectors in \mathbb{R}^n .

(i) Give the definition of "the line ℓ through \underline{a} parallel to $\underline{b} - \underline{a}$," and find the vector $\underline{v} \in \ell$ which is equi-distant from $\underline{a}, \underline{b}$ (i.e. $\|\underline{v} - \underline{a}\| = \|\underline{v} - \underline{b}\|$).

(ii) If \underline{v} is as in (i) and $||\underline{a}|| = ||\underline{b}||$, prove $\underline{v} \cdot (\underline{b} - \underline{a}) = 0$.

Solution (i): The line ℓ through \underline{a} parallel to $\underline{b} - \underline{a}$ is defined by $\ell = \{\underline{a} + t(\underline{b} - \underline{a}) : t \in \mathbb{R}\}$. We want the mid-point of the part of the line joining \underline{a} to \underline{b} and this intuitively should be given by taking $t = \frac{1}{2}$, i.e. $\underline{v} = \underline{a} + \frac{1}{2}(\underline{b} - \underline{a}) = \frac{1}{2}(\underline{a} + \underline{b})$. To check that this works, we calculate $\underline{v} - \underline{a} = \frac{1}{2}(\underline{b} - \underline{a})$, whereas $\underline{v} - \underline{b} = \frac{1}{2}(\underline{a} - \underline{b}) = -\frac{1}{2}(\underline{b} - \underline{a})$, so indeed $||\underline{v} - \underline{a}|| = ||\underline{v} - \underline{b}||$. **Solution (ii):** $\underline{v} \cdot (\underline{b} - \underline{a}) = \frac{1}{2}(\underline{b} + \underline{a}) \cdot (\underline{b} - \underline{a}) = \frac{1}{2}(\underline{b} \cdot \underline{b} - \underline{a} \cdot \underline{a} + \underline{a} \cdot \underline{b} - \underline{b} \cdot \underline{a}) = \frac{1}{2}(||\underline{b}||^2 - ||\underline{a}||^2) = 0$.

(b) (3 points): Prove that $2 |\underline{x} \cdot \underline{y}| ||\underline{x}||^2 \le ||\underline{x}||^6 + ||\underline{y}||^2$ for all vectors $\underline{x}, \underline{y} \in \mathbb{R}^n$.

Solution: The Cauchy-Schwarz inequality says $|\underline{x} \cdot \underline{y}| \leq ||\underline{x}|| ||\underline{y}||$, so $||\underline{x}||^6 + ||\underline{y}||^2 - 2|\underline{x} \cdot \underline{y}| ||\underline{x}||^2 \geq ||\underline{x}||^6 + ||\underline{y}||^2 - 2||\underline{x}||^3 ||\underline{y}|| = (||\underline{x}||^3 - ||\underline{y}||)^2 \geq 0.$

3 (a) (4 points): Suppose

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 2 & 1 & 1 & 3 & 1 \\ 0 & 0 & 1 & -1 & 1 \\ 1 & 1 & 2 & 0 & 2 \end{pmatrix}$$

Find (i) a basis for the null space N(A) of A (show all row operations!), and (ii) a basis for the column space C(A).

Make sure you justify your results by referring to the appropriate results from lecture.

Solution: We compute the reduced row echelon form of A as follows:

$$r_3 \leftrightarrow r_4 \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 2 & 1 & 1 & 3 & 1 \\ 1 & 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & -1 & 1 \end{pmatrix} r_2 \mapsto r_2 - 2r_1 \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 & -1 \\ 0 & 1 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 & 1 \end{pmatrix} r_3 \mapsto r_3 - r_2 \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & 2 & -2 & 2 \\ 0 & 0 & 1 & -1 & 1 \end{pmatrix}$$

$$r_3 \mapsto r_3/2 \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} r_1 \mapsto r_1 - r_3 \begin{pmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Thus \underline{x} is a solution of $A\underline{x} = \underline{0} \iff x_3 = x_4 - x_5, x_2 = 0, x_1 = -2x_4 \iff \underline{x} = (-2x_4, 0, x_4 - x_5, x_4, x_5)^{\mathrm{T}} = x_4(-2, 0, 1, 1, 0)^{\mathrm{T}} + x_5(0, 0, -1, 0, 1)^{\mathrm{T}}$, where x_4, x_5 are arbitrary reals, so the null space is the subspace spanned by $(-2, 0, 1, 1, 0)^{\mathrm{T}}$ and $(0, 0, -1, 0, 1)^{\mathrm{T}}$. Since $(-2, 0, 1, 1, 0)^{\mathrm{T}}$ and $(0, 0, -1, 0, 1)^{\mathrm{T}}$ are l.i. (which can be justified either by a direct check or by the fact that we are following the general method of lecture, which was shown <u>always</u> to yield l.i. vectors and hence a basis for the null space), this is a 2 dimensional space and $(-2, 0, 1, 1, 0)^{\mathrm{T}}$ and $(0, 0, -1, 0, 1)^{\mathrm{T}}$ are a basis.

(ii) In lecture we proved that if j_1, \ldots, j_Q are the column numbers of the pivot columns of rref(A) then the columns $\underline{\alpha}_{j_1}, \ldots, \underline{\alpha}_{j_Q}$ of A are a basis for C(A). In this case we have Q = 3 and $j_1, j_2, j_3 = 1, 2, 3$ respectively, so the first 3 cols. of A are a basis for C(A).

3 (b) (3 points): Suppose $V \subset \mathbb{R}^n$ is a non-trivial subspace of dimension k. Give the proof that any k vectors $\underline{v}_1, \ldots, \underline{v}_k \in V$ which span V (i.e. $V = \text{span}\{\underline{v}_1, \ldots, \underline{v}_k\}$) must automatically be a basis for V.

Solution: Since $\underline{v}_1, \ldots, \underline{v}_k$ are given to span V, we just have to show they are l.i. Suppose on the contrary that they are l.d. Then from lecture at least one of them, say \underline{v}_j , is a linear combination of the others. Thus $\underline{v}_j = \sum_{i \neq j} c_i \underline{v}_i$ for some constants $c_i, i \neq j$. But then any linear combination of $\underline{v}_1, \ldots, \underline{v}_k$ can be rewritten as a linear combination of $\underline{v}_i, i \neq j$. Then $V = \operatorname{span}{\{\underline{v}_1, \ldots, \underline{v}_k\}} = \operatorname{span}{\{v_i : i \neq j\}}$. But then a basis $\underline{w}_1, \ldots, \underline{w}_k$ for V would consist of kl.i. vectors in the span of the k-1 vectors $\underline{v}_i, i \neq j$, contradicting the linear dependence lemma. **4 (a) (3 points):** Suppose A is an $m \times n$ matrix and $\underline{b} \in \mathbb{R}^m$. (i) Give the proof that $A\underline{x} = \underline{b}$ has at least one solution $\underline{x} \in \mathbb{R}^n \iff \underline{b} \in C(A)$, and (ii) In case m = n and $N(A) = \{\underline{0}\}$, prove that $A\underline{x} = \underline{b}$ has a solution for each $\underline{b} \in \mathbb{R}^n$.

Hint for (ii): Use the rank/nullity theorem.

Solution: (i) As we checked in lecture, $A\underline{x} = \sum_{j=1}^{n} x_j \underline{\alpha}_j$, where $\underline{\alpha}_j$ is the *j*'th column of A, so $\exists \underline{x} = (x_1, \dots, x_n)^{\mathrm{T}}$ with $A\underline{x} = \underline{b} \iff \sum_{j=1}^{n} x_j \underline{\alpha}_j = \underline{b}$. Thus there is a solution of $A\underline{x} = \underline{b}$ if and only if some linear combination of the $\underline{\alpha}_j$ is equal to \underline{b} , i.e. if and only if $\underline{b} \in \operatorname{span}{\underline{\alpha}_1, \dots, \underline{\alpha}_n} = C(A)$.

(ii) If $N(A) = \{\underline{0}\}$ then the rank/nullity theorem tells us that the dimension of C(A) = n. That is C(A) is a subspace of \mathbb{R}^n of dimension n and hence it must be all of \mathbb{R}^n because by a theorem of lecture any k l.i. vectors in a k-dimensional subspace of \mathbb{R}^n must be a basis for that subspace. Thus $C(A) = \mathbb{R}^n$ and hence by part (i) $A\underline{x} = \underline{b}$ has a solution for all $\underline{b} \in \mathbb{R}^n$.

4 (b) (2 points): If V is a subspace of \mathbb{R}^n , give the definition of V^{\perp} . Prove (i) that V^{\perp} is a subspace, and (ii) that $V \cap V^{\perp} = \{\underline{0}\}$.

Solution: V^{\perp} is the set of all vectors $\underline{y} \in \mathbb{R}^n$ such that $\underline{y} \cdot \underline{v} = 0$ for every $\underline{v} \in V$.

(i) First note that (a) trivially $\underline{0} \in V^{\perp}$, and (b) $\underline{x}, \underline{y} \in V^{\perp} \Rightarrow \underline{v} \cdot (\underline{x} + \underline{y}) = \underline{v} \cdot \underline{x} + \underline{v} \cdot \underline{y} = 0 + 0 = 0$ for each $\underline{v} \in V$, so $\underline{x} + \underline{y} \in V^{\perp}$. Finally (c) $\lambda \in \mathbb{R}$ and $\underline{y} \in V^{\perp} \Rightarrow (\lambda \underline{y}) \cdot \underline{v} = \lambda(\underline{y} \cdot \underline{v}) = \lambda.0 = 0$ for each $\underline{v} \in V$, so $\lambda \underline{y} \in V^{\perp}$. Thus V^{\perp} has the required 3 properties, hence is a subspace.

(ii) $\underline{w} \in V \cap V^{\perp} \Rightarrow \underline{w} \in V^{\perp} \Rightarrow \underline{w} \cdot \underline{v} = 0 \forall \underline{v} \in V$. But $\underline{w} \in V$, so then $\underline{w} \cdot \underline{w} = ||\underline{w}||^2 = 0$, so $\underline{w} = \underline{0}$.