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We have talked about the notion of convergence in R:

Definition 1 A sequence {an}∞n=1 of reals converges to ` ∈ R if for all ε > 0 there exists N ∈ N
such that n ∈ N, n ≥ N implies |an − `| < ε. One writes lim an = `.

With ‖.‖ the standard norm in Rn, one makes the analogous definition:

Definition 2 A sequence {xn}∞n=1 of points in Rn converges to x ∈ Rn if for all ε > 0 there exists
N ∈ N such that n ∈ N, n ≥ N implies ‖xn − x‖ < ε. One writes limxn = x.

One important consequence of the definition in either case is that limits are unique:

Lemma 1 Suppose limxn = x and limxn = y. Then x = y.

Proof: Suppose x 6= y. Then ‖x − y‖ > 0; let ε = 1
2‖x − y‖. Thus there exists N1 such that n ≥ N1

implies ‖xn − x‖ < ε, and N2 such that n ≥ N2 implies ‖xn − y‖ < ε. Let n = max(N1, N2). Then

‖x− y‖ ≤ ‖x− xn‖+ ‖xn − y‖ < 2ε = ‖x− y‖,
which is a contradiction. Thus, x = y. �

Note that the properties of ‖.‖ were not fully used. What we needed is that the function d(x, y) =
‖x − y‖ was non-negative, equal to 0 only if x = y, symmetric (d(x, y) = d(y, x)) and satisfied the
triangle inequality. We thus make the following definition.

Definition 3 A metric space (X, d) is a set X together with a map d : X × X → R (called a
distance function) such that

1. d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X,

3. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Recall that a norm ‖.‖ : V → R on a vector space V over R (or C) is a map that is

1. positive definite, i.e. ‖x‖ ≥ 0 for all x ∈ V with equality if and only if x = 0,

2. absolutely homogeneous, i.e. ‖λx‖ = |λ| ‖x‖ for λ ∈ R (or C) and x ∈ V ,

3. satisfies the triangle inequality, i.e. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

Then one easily checks that every normed vector space is a metric space with the induced metric
d(x, y) = ‖x− y‖; for instance the triangle inequality for the metric follows from

d(x, z) = ‖x− z‖ = ‖(x− y) + (y − z)‖ ≤ ‖x− y‖+ ‖y − z‖ = d(x, y) + d(y, z),

where the inequality in the middle is the triangle inequality for norms.

There are many interesting metric spaces that are not normed vector spaces. For instance, it is not
hard to check that if V is a vector space with a norm, and one defines d(x, y) = min(‖x− y‖, 1), one
gets a metric that is not the metric induced by the norm.

A less interesting, and indeed rather pathological, example is the discrete metric space: let X be any
set, and let d(x, y) = 0 if x = y, d(x, y) = 1 if x 6= y.

A general construction is the following: if (X, d) is a metric space, and A ⊂ X, then (A, d|A×A) is a
metric space, i.e. the metric is d|A×A(x, y) = d(x, y) for x, y ∈ A. One typically simply writes (A, d)
in this case. We call (A, d) the metric space with the relative metric.

One can then make the analogous definition of the limit of a sequence in a metric space.



Definition 4 Suppose {xn}∞n=1 is a sequence of points in a metric space (X, d) and x ∈ X. One says
that {xn}∞n=1 converges to x, and writes limxn = x, if for all ε > 0 there exists N ∈ N such that
n ∈ N, n ≥ N implies that d(xn, x) < ε.

With this definition, the same proof as above gives that limits in a metric space are unique.

We now turn to continuity of functions f : X → Y where (X, dX), (Y, dY ) are metric spaces.

Definition 5 Suppose (X, dX), (Y, dY ) are metric spaces. A function f : X → Y is continuous
at the point a ∈ X if for all ε > 0 there exists δ > 0 such that x ∈ X, dX(x, a) < δ implies
dY (f(x), f(a)) < ε.

A function is called continuous if it is continuous at all a ∈ X.

Note that this generalizes the usual notion of continuity of real valued functions (Y = R, dY (b, c) =
|b − c|) on subsets X of R (dX(a, x) = |a − x|): for all ε > 0 there exists δ > 0 such that x ∈ X,
|x− a| < δ implies |f(x)− f(a)| < ε.

There is another closely related notion.

Definition 6 Suppose (X, dX), (Y, dY ) are metric spaces. A function f : X → Y is sequentially
continuous at the point a ∈ X if it satisfies that for every sequence {xn}∞n=1 in X which converges
to a, limn→∞ f(xn) = f(a).

We then have

Lemma 2 Suppose (X, dX), (Y, dY ) are metric spaces. A function f : X → Y is continuous at a ∈ X
if and only if it is sequentially continuous at a ∈ X.

Proof: The direction that sequential continuity implies continuity is Exercise 3.4 in Appendix A of
the textbook in the case of real valued functions on intervals; the same proof works in general (and is
highly recommended to work this out).

So let us show that continuity at a implies sequential continuity at a. Suppose that f is continuous
at a, and that {xn}∞n=1 is a sequence which converges to a. Let ε > 0. We need to find N ∈ N such
that n ≥ N implies dY (f(xn), f(a)) < ε.

But by the continuity of f at a there exists δ > 0 such that for x ∈ X, dX(x, a) < δ implies
dY (f(x), f(a)) < ε. On the other hand, by the convergence of the sequence of xn to a, with the
definition applied with δ, there exists N such that n ≥ N implies dX(xn, a) < δ. Thus, for n ≥ N ,
dX(xn, a) < δ, and so dY (f(xn), f(a)) < ε, which completes the proof as remarked above. �

The Bolzano-Weierstrass theorem on R stated that bounded sequences had convergent subsequences.
In particular, if [a, b] ⊂ R, and {xn}∞n=1 is a sequence in [a, b], then it has a subsequence {xnk

}∞k=1

converging to some x ∈ [a, b]. (The limit of any convergent sequence {yn}∞n=1 in [a, b] is necessarily in
[a, b] since yn ≥ a for all n implies lim yn ≥ a, and similarly for b.) The natural generalization is:

Definition 7 A metric space (X, dX) is (sequentially) compact if every sequence {xn}∞n=1 of points
in (X, dX) has a convergent subsequence.

With this definition, [a, b] ⊂ R is compact.

Here the word ‘sequentially’ refers to the fact that there is in fact an equivalent (in the setting of
metric spaces), but more subtle, definition, which is usually called compactness; this other notion in
fact generalizes in a useful way beyond even the setting of metric spaces.

We then have:



Theorem 1 Suppose (X, d) is a compact non-empty metric space, and f : X → R is continuous.
Then f is bounded, and it attains its maximum and minimum, i.e. there exist points a, b ∈ X such
that f(a) = sup{f(x) : x ∈ X}, f(b) = inf{f(x) : x ∈ X}.

Proof: Let us show first that f(X) = {f(x) : x ∈ X} is bounded above. Indeed, suppose it is not,
i.e. there is no upper bound for f(X). If n ∈ N, then in particular n is not an upper bound, so there
exists xn ∈ X such that f(xn) > n. Now consider the sequence {xn}∞n=1. By the compactness of X,
it has a convergent subsequence, say {xnk

}∞k=1; let’s say x = limk→∞ xnk
∈ X. Due to its continuity,

f is sequentially continuous at x, so limk→∞ f(xnk
) = f(x). In particular, applying the definition of

convergence with ε = 1, there exists N such that k ≥ N implies |f(xnk
)− f(x)| < 1. But then

|f(xnk
)| = |(f(xnk

)− f(x)) + f(x)| ≤ |f(xnk
)− f(x)|+ |f(x)| < |f(x)|+ 1

for all k ≥ N . Since f(xnk
) > nk ≥ k by the very choice of xnk

(here nk ≥ k is true for any subsequence,
as is easy to check by induction), this is a contradiction: choose any k > max(N, |f(x)|+ 1), and then
the two inequalities are contradictory. This completes the boundedness from above claim; a completely
analogous argument shows boundedness from below.

Now, to show that the maximum and minimum are actually attained, consider only the case of the
maximum, with that of the minimum being completely analogous. So now f(X) is non-empty (as
X is such) and is bounded above, so M = sup f(X) exists. Then for all n ∈ N, M − 1

n is not
an upper bound for f(X), so there exists xn ∈ X such that f(xn) > M − 1

n . Again, consider the
sequence {xn}∞n=1. By the compactness of X, it has a convergent subsequence, say {xnk

}∞k=1; let’s
say a = limk→∞ xnk

∈ X. We claim that f(a) = M . Indeed, due to its continuity, f is sequentially
continuous at a, so limk→∞ f(xnk

) = f(a). On the other hand, since M ≥ f(xnk
) > M − 1

nk
≥M − 1

k
by the very choice of the xn, we have by the sandwich theorem limk→∞ f(xnk

) = M . In combination
with the just observed sequential continuity, this gives f(a) = M , as desired. �

A very similar proof gives:

Theorem 2 Suppose (X, dX), (Y, dY ) are metric spaces, X is compact, and f : X → Y is continuous.
Then (f(X), dY ) is compact.

Proof: Suppose that {yn}∞n=1 is a sequence in f(X), i.e. yn = f(xn) for some xn. We need to find a
subsequence of {yn}∞n=1 which converges to a point in f(X).

Since X is compact, {xn}∞n=1 has a convergent subsequence, say {xnk
}∞k=1; let’s say x = limk→∞ xnk

∈
X. We claim that {ynk

}∞k=1 converges to f(x) ∈ f(X). Indeed, by the continuity of f , f is sequentially
continuous at x, so limk→∞ f(xnk

) = f(x). As f(xnk
) = ynk

, this proves the claim, and thus the
theorem. �


