
Mathematics Department Stanford University
Math 51H – Inner products

Recall the definition of an inner product space; see Appendix A.8 of the textbook.

Definition 1 An inner product space V is a vector space over R with a map 〈·, ·〉 : V × V → R such
that

1. (Positive definiteness) 〈x, x〉 ≥ 0 for all x ∈ V , with 〈x, x〉 = 0 if and only if x = 0.

2. (Linearity in first slot) 〈(λx+ µy), z〉 = λ〈x, z〉+ µ〈y, z〉 for all x, y, z ∈ V , λ, µ ∈ R,

3. (Symmetry) 〈x, y〉 = 〈y, x〉.

One often writes x · y = 〈x, y〉 for an inner product. The standard dot product on Rn is an example
of an inner product; another one is, on V = C([0, 1]) (continuous real valued functions on [0, 1])

〈f, g〉 =

∫ 1

0
f(x)g(x) dx.

There is an extension of the definition when the underlying field is C; the only change is that symmetry
is replaced by Hermitian symmetry, namely 〈x, y〉 = 〈y, x〉, where the bar denotes complex conjugate.

Note that symmetry plus linearity in the first slot give linearity in the second slot as well. (If the
field is C, they give conjugate linearity in the second slot, i.e. 〈z, (λx+ µy)〉 = λ〈z, x〉+ µ〈z, y〉 for all
x, y, z ∈ V , λ, µ ∈ C.) This linearity also gives 〈0, x〉 = 0 for all x ∈ V , as follows by writing 0 = 0 · 0
(with the first 0 on the right hand side being the real number, all others are vectors).

In inner product spaces one defines
‖x‖ =

√
〈x, x〉,

with the square root being the non-negative square root of a non-negative number (the latter being
the case by positive definiteness). Note that ‖x‖ = 0 if and only if x = 0.

In inner product spaces Cauchy-Schwarz and the triangle inequality are valid, with the same proof as
we showed in class in the case of Rn.

Before actually turning to inner products, let us discuss sums of subspaces, returning to arbitrary
underlying fields.

Definition 2 If Z is a vector space, V,W subspaces, V +W = {v + w : v ∈ V,w ∈W} ⊂ Z.

One easily checks that V +W is a subspace of Z.

Definition 3 One says that such a sum V + W in Z is direct if V ∩W = {0}. In this case, one
writes V +W = V ⊕W .

Given a subspace V of Z, another subspace W is called complementary to V if V +W = Z, where the
sum is direct.

Note that W complementary to V is equivalent to V complementary to W by symmetry of the
definition.

Lemma 1 If V is a subspace of Z, and W is complementary to V , then for any z ∈ Z there exist
unique v ∈ V , w ∈W such that v + w = z.

Proof: Existence of v, w as desired follows from V + W = Z. On the other hand, if v + w = v ′ + w ′

for some v, v ′ ∈ V , w,w ′ ∈W then v− v ′ = w ′−w, and the left hand side is in V , the right hand side
is in W , so they are both in V ∩W = {0}. Thus, v = v ′, w = w ′ as desired. �



Since bases will play an important role from now on, from this point on we assume that all vector
spaces under consideration are finite dimensional. Some of the results below have more sophisticated
infinite dimensional analogues though.

Note that any subspace V of a vector space Z has a complementary subspace. Indeed, let {v1, . . . , vk}
be a basis of V ; complete this to a basis {v1, . . . , vn} of Z, n ≥ k, and let W = Span{vk+1, . . . , vn}.
Then V +W = Z since the vj form a basis, while V ∩W = {0} since otherwise

∑k
j=1 cjvj =

∑n
j=k+1 djvj

for some choice of cj , dj , not all 0, and rearranging and using the linear independence of the vj provides
a contradiction.

We also have:

Lemma 2 If V is a subspace of Z and W is complementary to V , then dimV + dimW = dimZ.

Proof: Let {v1, . . . , vk} be a basis of V , {w1, . . . , wl} a basis ofW . We claim that {v1, . . . , vk, w1, . . . , wl}
is a basis of Z, hence dimZ = k+l = dimV+dimW . To see this claim, note that Span{v1, . . . , vk, w1, . . . , wl} =
Z since every element z of Z can be written as v+w, v ∈ V , w ∈W , and v, resp. w, are linear combi-
nations of the corresponding basis vectors. Moreover, if

∑k
j=1 cjvj +

∑l
i=1 diwi = 0 for some choice of

cj , di, not all zero, then rearranging gives
∑k

j=1 cjvj = −
∑l

i=1 diwi ∈ V ∩W , so both vanish, which
contradicts either the linear independence of the vj or those of the wi. �

Now, if Z is an inner product space (hence the field is R, though C would work similarly) and V is a
subspace, one lets

V ⊥ = {w ∈ Z : v ∈ V ⇒ v · w = 0}.

With this definition it is immediate that V ∩ V ⊥ = 0: if v ∈ V ∩ V ⊥, then v · v = 0, thus v = 0.
Proceeding as in Section 1.8 of the textbook, one shows that V + V ⊥ = Z, so in particular any z ∈ Z
can be uniquely written as z = v + w, v ∈ V , w ∈ V ⊥. Thus, in an inner product space there are
canonical complements, V ⊥ (called orthocomplement); in a general spaces there are many choices,
none of which is preferred.

Now, if V is an inner product space and e1, . . . , en is an orthonormal basis of V , i.e. ei · ej = 0 if i 6= j,
ei · ei = 1, then it is very easy to express any v ∈ V as the linear combination of the basis vectors.
Namely, we know that one can write

v =
n∑

j=1

cjej

for some choice of cj ∈ R; taking the inner product with ei gives

v · ei =
n∑

j=1

cj(ej · ei) = ci,

i.e. ci = v · ei.
We postpone for now the existence of orthonormal bases, since for Rn the standard one is orthonormal;
however, this can easily be shown in the same manner bases are constructed by considering a maximal
orthonormal subset of a vector space – note that an orthonormal collection of vectors is automatically
linearly independent, as follows by taking the inner product with the various vectors. (Later on, in
Section 3.5, the Gram-Schmidt procedure will produce an orthonormal basis from any given basis.)

Now consider linear maps T : V → W where V,W are inner product spaces. If e1, . . . , en, resp.
f1, . . . , fn are orthonormal bases of V , resp. W , then the matrix of T in this basis is very easy to find:
recall that the ij entry is aij if Tej =

∑m
i=1 aijfi. Thus, by the above argument (applied in W ),

aij = fi · Tej .



We claim that there is a unique linear map S such that Tv · w = v · Sw for all v ∈ V , w ∈ W . To
see uniqueness, notice that the matrix of S relative to the respective orthonormal bases has ij entry
ei ·Sfj , while that of T has lk entry fl ·Tek. If S has the desired property, ei ·Sfj = Sfj · ei = fj ·Tei,
so the ij entry of the matrix of S is the ji entry of the matrix of T , hence is determined by T . This
also gives existence: if S is defined to have ij matrix entry fj · Tei, so

S
m∑
j=1

xjfj =
m∑
j=1

xj

n∑
i=1

(fj · Tei)ei,

then expanding vectors v, w in the respective bases v =
∑
viei, w =

∑
wjfj ,

v · Sw =
n∑

i=1

m∑
j=1

viwj(fj · Tei) = Tv · w.

The map S is called the adjoint or transpose of T , denoted by T T or T ∗.

Note that if S = T T then ST = T , directly from the defining property of the adjoint.

The immediate property of T T and T is the following:

Lemma 3 We have N(T T ) = (RanT )⊥.

Proof: We have

w ∈ (RanT )⊥ ⇐⇒ w · Tv = 0 for all v ∈ V ⇐⇒ T Tw · v = 0 for all v ∈ V.

But the last statement is equivalent to T Tw = 0, with one implication being immediate, and for the
other taking v = T Tw shows ‖T Tw‖2 = 0, so T Tw = 0. This is exactly the statement that w ∈ N(T T )
as claimed. �

This lemma can be applied with T T in place of T , yielding N(T ) = Ran(T T )⊥. These give:

dim Ran(T T ) = dimV − dimN(T ) = dim Ran(T ),

where the last equality follows from the rank-nullity theorem. This is exactly the equality of the
column-rank and the row-rank of T .


