Mathematics Department Stanford University Math 51H - Inner products

Recall the definition of an inner product space; see Appendix A. 8 of the textbook.
Definition 1 An inner product space V is a vector space over \mathbb{R} with a map $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ such that

1. (Positive definiteness) $\langle x, x\rangle \geq 0$ for all $x \in V$, with $\langle x, x\rangle=0$ if and only if $x=0$.
2. (Linearity in first slot) $\langle(\lambda x+\mu y), z\rangle=\lambda\langle x, z\rangle+\mu\langle y, z\rangle$ for all $x, y, z \in V, \lambda, \mu \in \mathbb{R}$,
3. (Symmetry) $\langle x, y\rangle=\langle y, x\rangle$.

One often writes $x \cdot y=\langle x, y\rangle$ for an inner product. The standard dot product on \mathbb{R}^{n} is an example of an inner product; another one is, on $V=C([0,1])$ (continuous real valued functions on $[0,1]$)

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x \text {. }
$$

There is an extension of the definition when the underlying field is \mathbb{C}; the only change is that symmetry is replaced by Hermitian symmetry, namely $\langle x, y\rangle=\overline{\langle y, x\rangle}$, where the bar denotes complex conjugate.
Note that symmetry plus linearity in the first slot give linearity in the second slot as well. (If the field is \mathbb{C}, they give conjugate linearity in the second slot, i.e. $\langle z,(\lambda x+\mu y)\rangle=\bar{\lambda}\langle z, x\rangle+\bar{\mu}\langle z, y\rangle$ for all $x, y, z \in V, \lambda, \mu \in \mathbb{C}$.) This linearity also gives $\langle 0, x\rangle=0$ for all $x \in V$, as follows by writing $0=0 \cdot 0$ (with the first 0 on the right hand side being the real number, all others are vectors).
In inner product spaces one defines

$$
\|x\|=\sqrt{\langle x, x\rangle},
$$

with the square root being the non-negative square root of a non-negative number (the latter being the case by positive definiteness). Note that $\|x\|=0$ if and only if $x=0$.
In inner product spaces Cauchy-Schwarz and the triangle inequality are valid, with the same proof as we showed in class in the case of \mathbb{R}^{n}.
Before actually turning to inner products, let us discuss sums of subspaces, returning to arbitrary underlying fields.

Definition 2 If Z is a vector space, V, W subspaces, $V+W=\{v+w: v \in V, w \in W\} \subset Z$.
One easily checks that $V+W$ is a subspace of Z.
Definition 3 One says that such a sum $V+W$ in Z is direct if $V \cap W=\{0\}$. In this case, one writes $V+W=V \oplus W$.
Given a subspace V of Z, another subspace W is called complementary to V if $V+W=Z$, where the sum is direct.

Note that W complementary to V is equivalent to V complementary to W by symmetry of the definition.

Lemma 1 If V is a subspace of Z, and W is complementary to V, then for any $z \in Z$ there exist unique $v \in V, w \in W$ such that $v+w=z$.

Proof: Existence of v, w as desired follows from $V+W=Z$. On the other hand, if $v+w=v^{\prime}+w^{\prime}$ for some $v, v^{\prime} \in V, w, w^{\prime} \in W$ then $v-v^{\prime}=w^{\prime}-w$, and the left hand side is in V, the right hand side is in W, so they are both in $V \cap W=\{0\}$. Thus, $v=v^{\prime}, w=w^{\prime}$ as desired.

Since bases will play an important role from now on, from this point on we assume that all vector spaces under consideration are finite dimensional. Some of the results below have more sophisticated infinite dimensional analogues though.
Note that any subspace V of a vector space Z has a complementary subspace. Indeed, let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis of V; complete this to a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of $Z, n \geq k$, and let $W=\operatorname{Span}\left\{v_{k+1}, \ldots, v_{n}\right\}$. Then $V+W=Z$ since the v_{j} form a basis, while $V \cap W=\{0\}$ since otherwise $\sum_{j=1}^{k} c_{j} v_{j}=\sum_{j=k+1}^{n} d_{j} v_{j}$ for some choice of c_{j}, d_{j}, not all 0 , and rearranging and using the linear independence of the v_{j} provides a contradiction.

We also have:

Lemma 2 If V is a subspace of Z and W is complementary to V, then $\operatorname{dim} V+\operatorname{dim} W=\operatorname{dim} Z$.

Proof: Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis of $V,\left\{w_{1}, \ldots, w_{l}\right\}$ a basis of W. We claim that $\left\{v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{l}\right\}$ is a basis of Z, hence $\operatorname{dim} Z=k+l=\operatorname{dim} V+\operatorname{dim} W$. To see this claim, note that $\operatorname{Span}\left\{v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{l}\right\}=$ Z since every element z of Z can be written as $v+w, v \in V, w \in W$, and v, resp. w, are linear combinations of the corresponding basis vectors. Moreover, if $\sum_{j=1}^{k} c_{j} v_{j}+\sum_{i=1}^{l} d_{i} w_{i}=0$ for some choice of c_{j}, d_{i}, not all zero, then rearranging gives $\sum_{j=1}^{k} c_{j} v_{j}=-\sum_{i=1}^{l} d_{i} w_{i} \in V \cap W$, so both vanish, which contradicts either the linear independence of the v_{j} or those of the w_{i}.
Now, if Z is an inner product space (hence the field is \mathbb{R}, though \mathbb{C} would work similarly) and V is a subspace, one lets

$$
V^{\perp}=\{w \in Z: v \in V \Rightarrow v \cdot w=0\}
$$

With this definition it is immediate that $V \cap V^{\perp}=0$: if $v \in V \cap V^{\perp}$, then $v \cdot v=0$, thus $v=0$. Proceeding as in Section 1.8 of the textbook, one shows that $V+V^{\perp}=Z$, so in particular any $z \in Z$ can be uniquely written as $z=v+w, v \in V, w \in V^{\perp}$. Thus, in an inner product space there are canonical complements, V^{\perp} (called orthocomplement); in a general spaces there are many choices, none of which is preferred.

Now, if V is an inner product space and e_{1}, \ldots, e_{n} is an orthonormal basis of V, i.e. $e_{i} \cdot e_{j}=0$ if $i \neq j$, $e_{i} \cdot e_{i}=1$, then it is very easy to express any $v \in V$ as the linear combination of the basis vectors. Namely, we know that one can write

$$
v=\sum_{j=1}^{n} c_{j} e_{j}
$$

for some choice of $c_{j} \in \mathbb{R}$; taking the inner product with e_{i} gives

$$
v \cdot e_{i}=\sum_{j=1}^{n} c_{j}\left(e_{j} \cdot e_{i}\right)=c_{i}
$$

i.e. $c_{i}=v \cdot e_{i}$.

We postpone for now the existence of orthonormal bases, since for \mathbb{R}^{n} the standard one is orthonormal; however, this can easily be shown in the same manner bases are constructed by considering a maximal orthonormal subset of a vector space - note that an orthonormal collection of vectors is automatically linearly independent, as follows by taking the inner product with the various vectors. (Later on, in Section 3.5, the Gram-Schmidt procedure will produce an orthonormal basis from any given basis.)

Now consider linear maps $T: V \rightarrow W$ where V, W are inner product spaces. If e_{1}, \ldots, e_{n}, resp. f_{1}, \ldots, f_{n} are orthonormal bases of V, resp. W, then the matrix of T in this basis is very easy to find: recall that the $i j$ entry is $a_{i j}$ if $T e_{j}=\sum_{i=1}^{m} a_{i j} f_{i}$. Thus, by the above argument (applied in W),

$$
a_{i j}=f_{i} \cdot T e_{j}
$$

We claim that there is a unique linear map S such that $T v \cdot w=v \cdot S w$ for all $v \in V, w \in W$. To see uniqueness, notice that the matrix of S relative to the respective orthonormal bases has ij entry $e_{i} \cdot S f_{j}$, while that of T has $l k$ entry $f_{l} \cdot T e_{k}$. If S has the desired property, $e_{i} \cdot S f_{j}=S f_{j} \cdot e_{i}=f_{j} \cdot T e_{i}$, so the $i j$ entry of the matrix of S is the $j i$ entry of the matrix of T, hence is determined by T. This also gives existence: if S is defined to have $i j$ matrix entry $f_{j} \cdot T e_{i}$, so

$$
S \sum_{j=1}^{m} x_{j} f_{j}=\sum_{j=1}^{m} x_{j} \sum_{i=1}^{n}\left(f_{j} \cdot T e_{i}\right) e_{i}
$$

then expanding vectors v, w in the respective bases $v=\sum v_{i} e_{i}, w=\sum w_{j} f_{j}$,

$$
v \cdot S w=\sum_{i=1}^{n} \sum_{j=1}^{m} v_{i} w_{j}\left(f_{j} \cdot T e_{i}\right)=T v \cdot w
$$

The map S is called the adjoint or transpose of T, denoted by T^{T} or T^{*}.
Note that if $S=T^{T}$ then $S^{T}=T$, directly from the defining property of the adjoint.
The immediate property of T^{T} and T is the following:
Lemma 3 We have $N\left(T^{T}\right)=(\operatorname{Ran} T)^{\perp}$.

Proof: We have

$$
w \in(\operatorname{Ran} T)^{\perp} \Longleftrightarrow w \cdot T v=0 \text { for all } v \in V \Longleftrightarrow T^{T} w \cdot v=0 \text { for all } v \in V
$$

But the last statement is equivalent to $T^{T} w=0$, with one implication being immediate, and for the other taking $v=T^{T} w$ shows $\left\|T^{T} w\right\|^{2}=0$, so $T^{T} w=0$. This is exactly the statement that $w \in N\left(T^{T}\right)$ as claimed.
This lemma can be applied with T^{T} in place of T, yielding $N(T)=\operatorname{Ran}\left(T^{T}\right)^{\perp}$. These give:

$$
\operatorname{dim} \operatorname{Ran}\left(T^{T}\right)=\operatorname{dim} V-\operatorname{dim} N(T)=\operatorname{dim} \operatorname{Ran}(T)
$$

where the last equality follows from the rank-nullity theorem. This is exactly the equality of the column-rank and the row-rank of T.

