Mathematics Department Stanford University Math 51H - The Fundamental Theorem of Algebra

As a preliminary we need the following maximum principle for harmonic functions, which is of great importance in itself; we only state and prove the maximum principle on a ball, but the reader should note that an analogous theorem (with essentially identical proof) holds on any bounded open subset of \mathbb{R}^{n}.
In the statement, and subsequently, we use the notation

$$
B_{R}=\left\{\underline{x} \in \mathbb{R}^{n}:\|\underline{x}\|<R\right\}, \quad \bar{B}_{R}=\left\{\underline{x} \in \mathbb{R}^{n}:\|\underline{x}\| \leq R\right\}, \quad \partial B_{R}=\left\{\underline{x} \in \mathbb{R}^{n}:\|\underline{x}\|=R\right\} .
$$

Theorem (Maximum Principle for Harmonic Functions.) Suppose $u: \bar{B}_{R} \rightarrow \mathbb{R}$ is continuous and $u \mid B_{R}$ is C^{2} and harmonic (i.e. $\Delta u=\sum_{j=1}^{n} D_{j} D_{j} u \equiv 0$) on B_{R}. Then $\max _{\bar{B}_{R}} u=\max _{\partial B_{R}} u$.

Proof: Let $\varepsilon>0$ be arbitrary and define

$$
v(\underline{x})=u(\underline{x})+\varepsilon\|\underline{x}\|^{2}, \quad \underline{x} \in \bar{B}_{R},
$$

and observe that then $u \leq v$ in \bar{B}_{R} and $v \equiv u+\varepsilon R^{2}$ on ∂B_{R}.
We claim $\max _{\bar{B}_{R}} v=\max _{\partial B_{R}} v\left(=\max _{\partial B_{R}} u+\varepsilon R^{2}\right)$. If this is false then there is a point $\underline{a} \in B_{R}$ with $v(\underline{a})=\max _{\bar{B}_{R}} v>M+\varepsilon R^{2}$, where, here and subsequently, we take $M=\max _{\partial B_{R}} u$. Pick $\delta>0$ with $B_{\delta}(\underline{a}) \subset B_{R}$, Then, for each $j=1, \ldots, n, v\left(\underline{a}+t \underline{e}_{j}\right)$ is a C^{2} function of t for $|t|<\delta$ and takes its maximum at $t=0$. Hence from 1-variable calculus we have $\left.\frac{d}{d t}\left[v\left(\underline{a}+t \underline{e}_{j}\right)\right]\right|_{t=0}=0$ and $\left.\frac{d^{2}}{d t^{2}}\left[v\left(\underline{a}+t \underline{e}_{j}\right)\right]\right|_{t=0} \leq 0$. But of course by definition of partial derivatives, this says exactly that $D_{j} v(\underline{a})=0$ and $D_{j} D_{j} v(\underline{a}) \leq 0$. By taking the sum over j the latter inequality implies $\Delta v(\underline{a}) \leq 0$, whereas by direct computation we have $\Delta v=\Delta u+2 n \varepsilon \equiv 2 n \varepsilon>0$ at each point of B_{R}, a contradiction. So indeed $\max _{\bar{B}_{R}} v=M+\varepsilon R^{2}$ and hence $u(\underline{x}) \leq v(\underline{x}) \leq M+\varepsilon R^{2}$ for each $\underline{x} \in \bar{B}_{R}$. Since $\varepsilon>0$ is arbitrary this shows that $u(\underline{x}) \leq M$ for each $\underline{x} \in \bar{B}_{R}$.

Theorem (Fundamental Theorem of Algebra.) Let $P(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ be a polynomial of the complex variable $z=x+i y$ (where a_{0}, \ldots, a_{n-1} are given complex numbers). Then there are $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ with $P(z) \equiv\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{n}\right)$ for all $z \in \mathbb{C}$. (Thus $\lambda_{1}, \ldots, \lambda_{n}$ are the roots of $P(z)=0$.)

Remarks: Before we start the proof we make 3 remarks about such polynomials $P(z)$:
(i) $\lambda \in \mathbb{C} \Rightarrow P(z)-P(\lambda)=z^{n}-\lambda^{n}+\sum_{j=1}^{n-1} a_{j}\left(z^{j}-\lambda^{j}\right)$ and hence using the formula $z^{j}-\lambda^{j}=$ $(z-\lambda)\left(z^{j-1}+\lambda z^{j-2}+\cdots+\lambda^{j-2} z+\lambda^{j-1}\right)$ for $j \geq 2$, we obtain $P(z)-P(\lambda)=(z-\lambda) Q(z)$, where $Q(z)=z^{n-1}+\lambda z^{n-2}+\cdots+\lambda^{n-1}+\sum_{j=1}^{n-1} a_{j}\left(z^{j-1}+\lambda z^{j-2}+\cdots+\lambda^{j-2} z+\lambda^{j-1}\right)$ is a polynomial of degree $n-1$. In particular if $P\left(\lambda_{1}\right)=0$ (i.e. if λ_{1} is a root of the equation $P(z)=0$) then the above with $\lambda=\lambda_{1}$ implies $P(z) \equiv\left(z-\lambda_{1}\right) Q(z)$ for all $z \in \mathbb{C}$. Thus to prove the above fundamental theorem of algebra it suffices to prove we can always find one root, because then we can use induction on n with the inductive hypothesis that the theorem is true with $n-1$ in place of n for any $n \geq 2$ (which guarantees that $Q(z)=\left(z-\lambda_{2}\right) \cdots\left(z-\lambda_{n}\right)$ and hence $P(z)=\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right) \cdots\left(z-\lambda_{n}\right)$ as required).
(ii) As we proved in Q. 8 of hw9, the real and imaginary parts u, v of P satisfy the Cauchy-Riemann equations $u_{x}=v_{y}, u_{y}=-v_{x}$, and in particular are harmonic functions.
(iii) At points where $P(z) \neq 0$ we claim that the real and imaginary parts of $\frac{1}{P(z)}$ satisfy the Cauchy-Riemann equations, and hence are also harmonic. Check:

$$
\frac{1}{P(z)}=\frac{1}{u+i v}=S+i T \text { with } S, T \text { real } \Rightarrow S=\frac{u}{u^{2}+v^{2}}, T=\frac{-v}{u^{2}+v^{2}}
$$

so by using the quotient rule for taking derivatives we have

$$
\begin{aligned}
& S_{x}=\frac{\left(u^{2}+v^{2}\right) u_{x}-2 u\left(u u_{x}+v v_{x}\right)}{\left(u^{2}+v^{2}\right)^{2}}=\frac{u_{x}\left(v^{2}-u^{2}\right)-2 u v v_{x}}{\left(u^{2}+v^{2}\right)^{2}} \\
& T_{y}=\frac{-\left(u^{2}+v^{2}\right) v_{y}+2 v\left(u u_{y}+v v_{y}\right)}{\left(u^{2}+v^{2}\right)^{2}}=\frac{v_{y}\left(v^{2}-u^{2}\right)+2 u v u_{y}}{\left(u^{2}+v^{2}\right)^{2}}
\end{aligned}
$$

and since $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ (by Remark (ii) above), we thus have $S_{x}=T_{y}$. Similarly (exercise) $S_{y}=-T_{x}$.

Proof of the Fundamental Theorem of Algebra: As pointed out in Remark (i) above, it suffices to prove that there is one root of $P(z)=0$; that is, we simply have to show that $P(z)$ vanishes somewhere. Suppose on the contrary that $P(z) \neq 0$ for each $z \in \mathbb{C}$. Then by Remark (iii) above the real and imaginary parts S, T of $1 / P(z)$ are harmonic on \mathbb{R}^{2}. Also by the triangle inequality

$$
|P(z)|=\left|z^{n}+\sum_{j=0}^{n-1} a_{j} z^{j}\right| \geq\left|z^{n}\right|-\left|\sum_{j=0}^{n-1} a_{j} z^{j}\right| \geq\left|z^{n}\right|-\sum_{j=0}^{n-1}\left|a_{j} z^{j}\right|=|z|^{n}-\sum_{j=0}^{n-1}\left|a_{j}\right||z|^{j},
$$

and so

$$
|z|=R \geq 1 \Rightarrow|P(z)| \geq R^{n}-\sum_{j=0}^{n-1}\left|a_{j}\right| R^{j} \geq R^{n}\left(1-R^{-1} \sum_{j=0}^{n-1}\left|a_{j}\right|\right),
$$

and hence

$$
|z|=R \geq \max \left\{1,2 \sum_{j=0}^{n-1}\left|a_{j}\right|\right\} \Rightarrow|P(z)| \geq \frac{R^{n}}{2} \Rightarrow \frac{1}{|P(z)|} \leq \frac{2}{R^{n}},
$$

hence

$$
\varepsilon>0 \text { and }|z|=R \geq \max \left\{1,2 \sum_{j=0}^{n-1}\left|a_{j}\right|,\left(\frac{2}{\varepsilon}\right)^{1 / n}\right\} \Rightarrow \frac{1}{|P(z)|} \leq 2 R^{-n} \leq \varepsilon
$$

So take any $\varepsilon>0$ and let $R_{0}=\max \left\{1,2 \sum_{j=0}^{n-1}\left|a_{j}\right|,\left(\frac{2}{\varepsilon}\right)^{1 / n}\right\}$. Since $\max \{|S|,|T|\} \leq \sqrt{S^{2}+T^{2}}=$ $\frac{1}{|P(z)|}$ the above inequality tells us that

$$
|z|=R \geq R_{0} \Rightarrow|S|,|T| \leq \varepsilon .
$$

Since S, T are harmonic we can then use the maximum principle to conclude

$$
\max _{\bar{B}_{R}} S=\max _{\partial B_{R}} S \leq \varepsilon, \quad R \geq R_{0},
$$

and (applying the maximum principle to $-S$)

$$
\max _{\overline{B_{R}}}-S=\max _{\partial B_{R}}-S \leq \varepsilon, \quad R \geq R_{0} .
$$

Thus $|S| \leq \varepsilon$ on $\bar{B}_{R} \forall R \geq R_{0}$ and hence $\sup _{\mathbb{R}^{2}}|S| \leq \varepsilon$. Since $\varepsilon>0$ was arbitrary this implies $S \equiv 0$. Similarly $T \equiv 0$, so both S and T vanish identically, which of course is impossible because $1 / P(z)=S+i T$ is in fact never zero. Thus $P(z)$ must have a zero somewhere in \mathbb{C} and the proof is complete.

