Mathematics Department Stanford University Math 51H Final Examination, December 7, 2015

2 Hours

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded Question 7 is extra credit only! Work on it only if you are done with the other problems!

Q.1	
Q. 2	
Q.3	
Q. 4	
Q. 5	
Q.6	
T/35	
Q.7	

Name (Print Clearly): \qquad

I understand and accept the provisions of the honor code (Signed) \qquad

1(a) (3 points): Find (with detailed proof!) $\operatorname{det} A, \operatorname{det} B$ and $\operatorname{det}(A B)$ if

$$
A=\left(\begin{array}{llll}
0 & 0 & 1 & 2 \\
0 & 0 & 2 & 1 \\
0 & 3 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

(b) (3 points) Suppose $A: V \rightarrow W$ is linear where V, W are finite dimensional real vector spaces. Let $N(A)=\{x \in V: A x=0\}$ and $R(A)=\{A x: x \in V\} \subset W$. Show that $\operatorname{dim} N(A)+\operatorname{dim} R(A)=\operatorname{dim} V$.
Note: If you want, you may use matrices, but be specific about the correspondence between matrices and operators. Also, this problem works over any field.

2 (a) ($2 \frac{1}{2}$ points): Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and let a be a given point of \mathbb{R}^{n}. Show that if there is $\rho>0$ such that the partial derivatives $D_{j} f(x), j=1, \ldots, n$ exist for $\|x-a\|<\rho$ and are continuous at a, then f is differentiable at a.
(b) ($3 \frac{1}{2}$ points): State (without proof) the Lagrange multiplier theorem, and use it (together with any other theorems from lecture that you need) to find a point where the function $x y+z^{3}$ takes its maximum subject to the constraint that $x^{4}+y^{4}+z^{4}=1$, and justify your answer.
Note: Your discussion should include the reason that the maximum exists.

3(a) (3 points): Suppose $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are metric spaces (if you wish, you may assume $X \subset \mathbb{R}^{n}, Y \subset \mathbb{R}^{m}$ with the relative metric). Show that $f: X \rightarrow Y$ is continuous if and only if for all $U \subset Y$ open, $f^{-1}(U)=\{x \in X: f(x) \in U\}$ is open.
(b) (3 points) Assume $\sin x, \cos x$ are defined as usual by the power series $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ and $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$ respectively. Then (i) prove $\frac{d}{d x} \sin x=\cos x$ and $\frac{d}{d x} \cos x=-\sin x$, and (ii) prove the identity $\sin (x+a)=\sin x \cos a+\cos x \sin a$.

Hint for (ii): For fixed a define $f_{a}(x)=\sin (x+a)-\sin x \cos a-\cos x \sin a$ and start by showing that $\left.\frac{d^{n}}{d x^{n}} f_{a}(x)\right|_{x=0}=0$ for all $n=0,1,2, \ldots$.

4(a) (3 $\frac{1}{2}$ points): Find all eigenvalues and corresponding eigenvectors for the matrix

$$
\left(\begin{array}{ccc}
5 & -2 & 1 \\
-2 & 2 & 2 \\
1 & 2 & 5
\end{array}\right)
$$

(b) ($1 \frac{1}{2}$ points): Prove that the quadratic form $Q(h)=5 h_{1}^{2}-4 h_{1} h_{2}+2 h_{2}^{2}+2 h_{1} h_{3}+$ $4 h_{2} h_{3}+6 h_{3}^{2}$ is positive definite.
Hint: compare Q with the quadratic form of the matrix in part (a).

5(a) (3 points): Suppose that $\left\{M_{n}\right\}_{n=1}^{\infty}$ is a sequence with $M_{n} \geq 0$ for all n, and $\sum_{n=1}^{\infty} M_{n}$ converges. Show that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in a complete normed vector space ($V,\|$.$\|)$ (if you wish, you may take $V=\mathbb{R}^{m}$ with the standard norm) and $\left\|x_{n}\right\| \leq M_{n}$ for all n, then $\sum_{n=1}^{\infty} x_{n}$ converges in V, i.e. $\lim _{k \rightarrow \infty} \sum_{n=1}^{k} x_{n}$ exists. (This is the Weierstrass M-test.)
(b) (3 points): Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}} \cos (n x)$ converges uniformly to a C^{1} function $f(x)$ on $[0,2 \pi]$ and $f^{\prime}(x)=-\sum_{n=1}^{\infty} \frac{1}{n^{3}} \sin (n x)$.

6(a) (3 points): Suppose V is a finite dimensional real vector space, and e_{1}, \ldots, e_{n} is a basis for V. Show that the linear maps $f_{i}: V \rightarrow \mathbb{R}, i=1, \ldots, n$, defined by $f_{i}\left(\sum_{j=1}^{n} a_{j} e_{j}\right)=a_{i}$ give a basis (called the dual basis) of $V^{*}=\mathcal{L}(V, \mathbb{R})$.
(b) (3 points): Suppose that $A \in \mathcal{L}(V, V)$ is linear, V, etc., as above. Show that trace $A=$ $\sum_{j=1}^{n} f_{j}\left(A e_{j}\right)$ is independent of the choice of the basis of V, and if A is symmetric, then trace A is the sum of the eigenvalues of A, counted with multiplicity, i.e. if $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct eigenvalues, then trace $A=\sum_{j=1}^{k} \lambda_{j} \operatorname{dim} N\left(A-\lambda_{j} I\right)$.
Note: $f_{j}\left(A e_{j}\right)$ is the $j j$ entry of the matrix of A in the basis e_{1}, \ldots, e_{n}, so the trace is the sum of the diagonal entries of the matrix.

7 (6 points extra credit only): Suppose $a_{m n} \geq 0$ for $m, n \geq 1$ integer. Show that the set $\left\{\sum_{(m, n) \in B} a_{m n}, B \subset \mathbb{N}^{+} \times \mathbb{N}^{+}, B\right.$ finite $\}$ is bounded above if and only if for each m, $\sum_{n=1}^{\infty} a_{m n}$ converges and $\left\{\sum_{m=1}^{M} \sum_{n=1}^{\infty} a_{m n}: M \geq 1\right\}$ is bounded above. Show moreover that in this case

$$
\sup \left\{\sum_{(m, n) \in B} a_{m n}, B \subset \mathbb{N}^{+} \times \mathbb{N}^{+}, B \text { finite }\right\}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m n},
$$

where both sums on the right hand side converge, and

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m n}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m n} .
$$

