Mathematics Department Stanford University Math 51H Final Examination, December 9, 2013

3 Hours

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded

Q. 1	
Q. 2	
Q.3	
Q. 4	
Q. 5	
Q.6	
Q. 7	
Q. 8	
T $/ 40$	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

Name:
1(a) (2 points): Calculate the determinant of
$\left(\begin{array}{cccc}11 & 12 & 13 & 426 \\ 2001 & 2002 & 2003 & 421 \\ 2 & 1 & 0 & -419 \\ 101 & 101 & 102 & 2000\end{array}\right)$

No calculators: Clearly state all column/row operations.
(b) (3 points) Find the matrix of the orthogonal projection onto the plane $V=\{(x, y, z) \in$ $\left.\mathbb{R}^{3}: 2 x+y-z=0\right\}$.
Hint: Start by finding the orthogonal projection onto the (1-dimensional) normal space V^{\perp}.

2(a) (2 points): If $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{1} and if $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is also C^{1}, prove that the velocity vector $\Gamma^{\prime}(t)$ of the curve $\Gamma(t)=\binom{\gamma(t)}{u(\gamma(t))}$ is orthogonal to the vector $\binom{\nabla u(\gamma(t))}{-1}$ for each $t \in \mathbb{R}$.
(b) (3 points): Let e^{x} be defined as usual by $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for $x \in \mathbb{R}$. Prove:
(i) $\lim _{x \rightarrow 0}|x|^{-p} e^{-1 / x^{2}}=0$ for each $p>0$.

Note: You can of course assume, without giving the proof, the standard property $e^{u+v}=e^{u} e^{v}$ (so in particular $e^{-u}=1 / e^{u}$).
(ii) If $f(x)=e^{-1 / x^{2}}$ for $x \neq 0$ and $f(0)=0$, find the Taylor series $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$ of f.

Hint for (ii): ${ }^{2}$ Start by checking (by induction on n) that for $x \neq 0$ each derivative $f^{(n)}(x)$ has the form $p_{n}(1 / x) e^{-1 / x^{2}}$, where p_{n} is a polynomial.

3(a) (2 points): Define the term "open set" in \mathbb{R}^{n}, and prove that the intersection $U \cap V$ of 2 open sets U, V is again an open set.

3(b) (3 points): If $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are both continuous, and if $S=\left\{\underline{x} \in \mathbb{R}^{n}\right.$: $\varphi(\underline{x})=0\}$ is bounded, prove there is a point $\underline{a} \in S$ such that $f(\underline{x}) \leq f(\underline{a}) \forall \underline{x} \in S$.

4(a) (3 points): State (without proof) the Spectral Theorem for a real symmetric $n \times n$ matrix A, and use it to prove that for a given quadratic form $H(\underline{x})=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}\left(a_{i j}=\right.$ $a_{j i}$ real) there is a change of coordinates $y=Q^{\mathrm{T}} \underline{x}$ with Q orthogonal (i.e. $Q^{T} Q=Q Q^{T}=I$) such that the quadratic form $H(\underline{x})$ is transformed to an expression of the form $\sum_{j=1}^{n} \lambda_{j} y_{j}^{2}$ for suitable real $\lambda_{1}, \ldots, \lambda_{n}$.
(b) (2 points): Find the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 3 & -1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

$\mathbf{5 (a)}$ (2 points): Give the " (ε, δ) definition" of continuity of a function $f:(a, b) \rightarrow \mathbb{R}$ at a point $c \in(a, b)$, and using the definition prove that if $f:(0,1) \rightarrow \mathbb{R}$ is continuous at a point $c \in(0,1)$ and if $f(c)=1$ then there is $\delta>0$ such that $f(x)>\frac{1}{2}$ for all $x \in(c-\delta, c+\delta)$.

5(b) (3 points): Prove that the function $f(x, y)=1-2 x-y+4 x^{2}+4 x y+2 y^{2}+3 x y \sin x y$ has a critical point at $(x, y)=\left(\frac{1}{4}, 0\right)$ and that f has a strict local minimum there.
$\mathbf{6 (a)}$ (2 points): Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors $\underline{v}_{1}=(1,1,0,0)^{\mathrm{T}}, \underline{v}_{2}=(0,1,1,0)^{\mathrm{T}}, \underline{v}_{3}=(0,0,1,1)^{\mathrm{T}}$.
(b) (3 points): Find the set of all solutions of the inhomogeneous system $A \underline{x}=y$ where

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & 1 \\
2 & 1 & 1 & 3 & 2 \\
1 & 1 & 2 & 0 & 3 \\
0 & 0 & 1 & -1 & 1
\end{array}\right) \quad y=\left(\begin{array}{c}
1 \\
4 \\
1 \\
-1
\end{array}\right)
$$

(Give your answer as an affine space.)

7 (a) (2 points): Find all eigenvalues and corresponding eigenvectors for the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

7(b) (3 points): Show that the system of two non-linear equations

$$
\begin{aligned}
& \left(x^{2}-y^{2}\right) y+7 x=1 \\
& \left(x^{2}-y^{2}\right) x+5 y=1
\end{aligned}
$$

has a solution (x, y) with $x^{2}+y^{2}<1$.
Hint: Define $f(x, y)=\left(\frac{1}{7}\left(1-\left(x^{2}-y^{2}\right) y\right), \frac{1}{5}\left(1-\left(x^{2}-y^{2}\right) x\right)\right)$ and start by proving that f is a contraction mapping $D \rightarrow D$, where $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

8(a) (2 points): Let A be an $n \times n$ real matrix $\left(a_{i j}\right)$. Define the adjoint matrix adj A and give the proof that $A \operatorname{adj} A=(\operatorname{det} A) I$.

8(b) (3 points): Show that $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+4 y^{2}+z^{2}=1\right\}$ is a 2-dimensional C^{1} manifold and find a point $\underline{a} \in S$ at which the function $f(x, y, z)=x y z$ takes its maximum. Note: You should begin by discussing the existence of such a point $\underline{a} \in S$.

