Mathematics Department Stanford University Math 51H Final Examination, December 9, 2013

3 Hours

Solutions

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages Note: work sheets are provided for your convenience, but will not be graded

_Q.1	
Q.2	
Q.3	
Q.4	
Q.5	
Q.6	
Q.7	
Q.8	
T/40	

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

1 (a) (2 points): Calculate the determinant of

/ 11	12	13	426 \
2001	2002	2003	421
2	1	0	-419
101	101	102	2000/

No calculators: Clearly state all column/row operations.

Solution:

$$\begin{pmatrix} 11 & 12 & 13 & 426\\ 2001 & 2002 & 2003 & 421\\ 2 & 1 & 0 & -419\\ 101 & 101 & 102 & 2000 \end{pmatrix} \begin{pmatrix} c_2 \mapsto c_2 - c_1\\ c_3 \mapsto c_3 - c_1 \end{pmatrix} \begin{pmatrix} 11 & 1 & 2 & 426\\ 2001 & 1 & 2 & 421\\ 2 & -1 & -2 & -419\\ 101 & 0 & 1 & 2000 \end{pmatrix}$$
$$\begin{pmatrix} r_2 \mapsto r_2 - r_1\\ r_3 \mapsto r_3 - r_1 \end{pmatrix} \begin{pmatrix} 11 & 1 & 2 & 426\\ 1990 & 0 & 0 & -5\\ 13 & 0 & 0 & 7\\ 101 & 0 & 1 & 2000 \end{pmatrix}$$

Now none of the above operations changes the determinant so we can just compute the determinant of the last matrix above, and expanding this down the second column gives

$$-\det \begin{pmatrix} 1990 & 0 & -5\\ 13 & 0 & 7\\ 101 & 1 & 2000 \end{pmatrix} = +\det \begin{pmatrix} 1990 & -5\\ 13 & 7 \end{pmatrix} = 7 \times 1990 + 5 \times 13 = 13,930 + 65 = 13,995.$$

(b) (3 points): Find the matrix of the orthogonal projection onto the plane $V = \{(x, y, z) \in \mathbb{R}^3 :$ $2x + y - z = 0\}.$

Hint: Start by finding the orthogonal projection onto the (1-dimensional) normal space V^{\perp} .

The given plane V is $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = 0$, i.e. the plane is the set of all points orthogonal to

 $\begin{pmatrix} z \end{pmatrix}$ $\begin{pmatrix} -1 \end{pmatrix}$ the vector $\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$, and so V^{\perp} is the 1-dimensional space spanned by the unit vector $\frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$, and the othogonal projection onto the normal space is the map taking the vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ to the

vector
$$\frac{1}{6} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$
 which is the linear transformation with matrix $\frac{1}{6} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} (2, 1, -1) = \frac{1}{6} \begin{pmatrix} 4 & 2 & -2 \\ 2 & 1 & -1 \\ -2 & -1 & 1 \end{pmatrix}$, and the orthogonal projection onto V has matrix I – this matrix; i.e. $\frac{1}{6} \begin{pmatrix} 2 & -2 & 2 \\ -2 & 5 & 1 \\ 2 & 1 & 5 \end{pmatrix}$

2. (a) (2 points): If $u : \mathbb{R}^n \to \mathbb{R}$ is C^1 and if $\gamma : \mathbb{R} \to \mathbb{R}^n$ is also C^1 , prove that the velocity vector $\Gamma'(t)$ of the curve $\Gamma(t) = \begin{pmatrix} \gamma(t) \\ u(\gamma(t)) \end{pmatrix}$ is orthogonal to the vector $\begin{pmatrix} \nabla u(\gamma(t)) \\ -1 \end{pmatrix}$ for each $t \in \mathbb{R}$.

Solution: By the chain rule $\frac{d}{dt}(u(\gamma(t))) = \sum_{j=1}^{n} D_{j}u(\gamma(t))\gamma'_{j}(t) = \gamma'(t) \cdot \nabla u(\gamma(t))$, so $\Gamma'(t) = \begin{pmatrix} \gamma'(t) \\ \gamma'(t) \cdot \nabla u(\gamma(t)) \end{pmatrix}$, and hence $\Gamma'(t) \cdot \begin{pmatrix} \nabla u(\gamma(t)) \\ -1 \end{pmatrix} = \nabla u(\gamma(t)) \cdot \gamma'(t) - \nabla u(\gamma(t)) \cdot \gamma'(t) = 0.$

(b) (3 points) Let e^x be defined as usual by $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for $x \in \mathbb{R}$. Prove:

(i) $\lim_{x\to 0} |x|^{-p} e^{-1/x^2} = 0$ for each p > 0.

Note: You can of course assume, without giving the proof, the standard property $e^{u+v} = e^u e^v$ (so in particular $e^{-u} = 1/e^u$).

(ii) If $f(x) = e^{-1/x^2}$ for $x \neq 0$ and f(0) = 0, find the Taylor series $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ of f. Hint for (ii): Start by checking (by induction on n) that for $x \neq 0$ each derivative $f^{(n)}(x)$ has the form $p_n(1/x)e^{-1/x^2}$, where p_n is a polynomial.

Solution (i): Observe first that, for y > 0, $e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!} \ge \frac{y^q}{q!}$ for each q = 1, 2, ..., so in particular $e^{-1/x^2} \le q! x^{2q}$ for any $x \ne 0$ and any q = 1, 2, ..., and hence $|x|^{-p} e^{\frac{-1}{x^2}} \le q! |x|^{2q-p} \to 0$ as $x \to 0$ if we take q > p/2.

Solution (ii): Let P_n be the proposition that the hint is true, n = 1, 2, ... By the chain rule $f'(x) = 2x^{-3}e^{-1/x^2}$ for $x \neq 0$, so P_1 is true with $p_1(t) = 2t^3$. If P_n is true then we have $f^{(n)}(x) = p_n(1/x)e^{-1/x^2}$ for $x \neq 0$, and by the product rule for differentiation we get $f^{(n+1)}(x) = (2x^{-3}p_n(1/x) - x^{-2}p'_n(1/x))e^{-1/x^2}$, so P_{n+1} is true with $p_{n+1}(t) = 2t^3p_n(t) - t^2p'_n(t)$. Now by (i) all derivatives $f^{(n)}(0) = 0$ because (i) implies $f^{(n+1)}(0) = \lim_{x\to 0} x^{-1}(f^{(n)}(x) - f^{(n)}(0)) =$ $\lim_{x\to 0} x^{-1}p_n(1/x)e^{-1/x^2} = 0$ (and the limit does exist by induction on n starting at n = 0). Hence the Taylor series is 0 (the identically zero function).

3 (a) (2 points): Define the term "open set" in \mathbb{R}^n , and prove that the intersection $U \cap V$ of 2 open sets U, V is again an open set.

Solution: Let $(x_0, y_0) \in U \cap V$. Then since $(x_0, y_0) \in U$ there is $\delta_1 > 0$ such that the ball $B_{\delta_1}(x_0, y_0) \subset U$ and similarly there is a ball $B_{\delta_2}(x_0, y_0) \subset V$ for some $\delta_2 > 0$, and so taking $\delta = \min\{\delta_1, \delta_2\}(>0)$ we have $B_{\delta}(x_0, y_0) \subset$ both U and V; i.e. $B_{\delta}(x_0, y_0) \subset U \cap V$.

3 (b) (3 points): If $\varphi : \mathbb{R}^n \to \mathbb{R}$ and $f : \mathbb{R}^n \to \mathbb{R}$ are both continuous, and if $S = \{\underline{x} \in \mathbb{R}^n : \varphi(\underline{x}) = 0\}$ is bounded, prove there is a point $\underline{a} \in S$ such that $f(\underline{x}) \leq f(\underline{a}) \ \forall \underline{x} \in S$.

Solution: We claim that S is closed. Let y be a limit point of S, so there is a sequence $\underline{x}_k \to y$ with $\underline{x}_k \in S$ for each k. Then $\varphi(\underline{x}_k) = 0$ and by continuity of φ we have $\varphi(y) = \lim_{k \to \infty} \varphi(\underline{x}_k) = 0$, so $y \in S$ and we have shown that S is closed. Thus S is a closed bounded set (i.e. a compact set), and hence by a theorem from lecture f|S attains its maximum value somewhere on S; that is, there is a point $\underline{a} \in S$ such that $f(\underline{x}) \leq f(\underline{a})$ for each $\underline{x} \in S$.

4(a) (3 points): State (without proof) the Spectral Theorem for a real symmetric $n \times n$ matrix A, and use it to prove that for a given quadratic form $H(\underline{x}) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$ $(a_{ij} = a_{ji} \text{ real})$ there is a change of coordinates $y = Q^T \underline{x}$ with Q orthogonal (i.e. $Q^T Q = Q Q^T = I$) such that the quadratic form $H(\underline{x})$ is transformed to an expression of the form $\sum_{j=1}^{n} \lambda_j y_j^2$ for suitable real $\lambda_1, \ldots, \lambda_n$.

Solution: The spectral theorem states that if A is a symmetric $n \times n$ matrix then there is an othonormal basis $\underline{v}_1, \ldots, \underline{v}_n$ for \mathbb{R}^n such that for each j there is a real λ_j with $A\underline{v}_j = \lambda_j \underline{v}_j$ (i.e. each \underline{v}_i is an eigenvector of A).

Let Q be the matrix with columns $\underline{v}_1, \ldots, \underline{v}_n$ and observe that the j'th column of AQ is then $A\underline{v}_j = \lambda_j \underline{v}_j$ and hence $Q^{\mathrm{T}}(AQ)$ has entry $\underline{v}_i \cdot (\lambda_j \underline{v}_j)$ in the *i*'th row and *j*'th column; i.e. $\lambda_j \delta_{ij}$, where $\delta_{ij} = 1$ if i = j and = 0 if $i \neq j$. That is $Q^T A Q$ is the diagonal matrix with the eigenvalues $\lambda_1, \ldots, \lambda_n$ down the leading diagonal. Observe also that the entry of $Q^{\mathsf{T}}Q$ in the *i*'th row and *j*'th column is $\underline{v}_i \cdot \underline{v}_j = \delta_{ij}$; that is $Q^T Q = I$, so Q is indeed an orthogonal matrix.

The quadratic form $\sum_{i,j} a_{ij} x_i x_j = \underline{x}^{\mathrm{T}} A \underline{x}$, and with $y = Q^{\mathrm{T}} \underline{x}$ (i.e. $\underline{x} = Q y$), this is $y^{\mathrm{T}} Q^{\mathrm{T}} A Q y =$ $y^{\mathrm{T}}Dy$, where D is the diagonal matrix with entries $\lambda_1, \ldots, \lambda_n$ down the leading diagonal, so in terms of y the quadratic form is just $\sum_{j=1}^{n} \lambda_j y_j^2$ as claimed.

 $\begin{pmatrix} 1 & 3 & -1 \\ 0 & 1 & 0 \end{pmatrix}$

(b) (2 points). Find the inverse of the matrix

5(a) (2 points): Give the " (ε, δ) definition" of continuity of a function $f: (a, b) \to \mathbb{R}$ at a point $c \in (a, b)$, and using the definition prove that if $f: (0, 1) \to \mathbb{R}$ is continuous at a point $c \in (0, 1)$ and if f(c) = 1 then there is $\delta > 0$ such that $f(x) > \frac{1}{2}$ for all $x \in (c - \delta, c + \delta)$.

Solution: Definition: For each $\varepsilon > 0$ there is a $\delta \in (0, \min\{c, 1-c\})$ such that $|x-c| < \delta \Rightarrow$ $|f(x) - f(c)| < \varepsilon$. Thus $f(c) - \varepsilon < f(x) < f(c) + \varepsilon$ whenever $|x - c| < \delta$, so in particular using this with f(c) = 1 and $\varepsilon = \frac{1}{2}$ we have that there is a $\delta > 0$ such that $\frac{1}{2} < f(x)$ whenever $|x - c| < \delta$.

5(b) (3 points): Prove that the function $f(x, y) = 1 - 2x - y + 4x^2 + 4xy + 2y^2 + 3xy \sin xy$ has a critical point at $(x, y) = (\frac{1}{4}, 0)$ and that f has a local minimum there.

Solution: The gradient $\nabla f(x,0)$ is $(-2+8x,-1+4x)^{\mathrm{T}} = 0$ at $x = \frac{1}{4}$, so $(x,y) = (\frac{1}{4},0)$ is a critical point as claimed. Now the Hessian at $(x,y) = (\frac{1}{4},0)$ is $\begin{pmatrix} 8 & 4 \\ 4 & 4 + \frac{6}{16} \end{pmatrix} = \begin{pmatrix} 8 & 4 \\ 4 & \frac{35}{8} \end{pmatrix}$ and hence the Hessian quadratic form is $8y_1^2 + (35/8)y_2^2 + 8y_1y_2 \ge 4y_1^2 + 4(y_1^2 + y_2^2 + 2y_1y_2) = 4y_1^2 + (y_1 + y_2)^2 > 0$ for $(y_1, y_2) \neq (0, 0)$, so by the second derivative test f has a strict local min at $(x, y) = (\frac{1}{4}, 0)$. (We proved generally that if \underline{a} is a critical point f and if the Hessian of f at \underline{a} is positive definite, then the function has a strict local minimum at a.)

6 (a) (2 points): Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by the vectors $\underline{v}_1 = (1, 1, 0, 0)^{\mathrm{T}}, \underline{v}_2 = (0, 1, 1, 0)^{\mathrm{T}}, v_3 = (0, 0, 1, 1)^{\mathrm{T}}.$

Solution: It is better to use the order $\underline{v}_1, \underline{v}_3, \underline{v}_2$, because $\underline{v}_1, \underline{v}_3$ are already orthogonal, and so the normalized vectors $\underline{w}_1 = \frac{1}{\sqrt{2}}v_1, \underline{w}_2 = \frac{1}{\sqrt{2}}v_3$, are already orthonormal, and the Gram-Schmidt process requires only one further step $\underline{w}_3 = \|\underline{v}_2 - \underline{w}_1 \cdot \underline{v}_2 \underline{w}_1 - \underline{w}_2 \cdot \underline{v}_2 \underline{w}_2\|^{-1}(\underline{v}_2 - \underline{w}_1 \cdot \underline{v}_2 \underline{w}_1 - \underline{w}_2 \cdot \underline{v}_2 \underline{w}_2) = \|(0, 1, 1, 0)^{\mathrm{T}} - (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})^{\mathrm{T}}\|^{-1}((0, 1, 1, 0)^{\mathrm{T}} - (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})^{\mathrm{T}}) = (-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2})^{\mathrm{T}}.$ Thus the required orthonormal basis is $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0)^{\mathrm{T}}, (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^{\mathrm{T}}, (-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})^{\mathrm{T}}.$

(b) (3 points): Find the set of all solutions of the inhomogeneous system $A\underline{x} = y$ where

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 2 & 1 & 1 & 3 & 2 \\ 1 & 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -1 & 1 \end{pmatrix} \qquad y = \begin{pmatrix} 1 \\ 4 \\ 1 \\ -1 \end{pmatrix}$$

(Give your answer as an affine space.)

Solution: Consider the augmented matrix

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 3 & 2 & 4 \\ 1 & 1 & 2 & 0 & 3 & 1 \\ 0 & 0 & 1 & -1 & 1 & -1 \end{pmatrix}$$

To compute the solution set, as in lecture we use elementary row operations on the augmented matrix which reduce A to reduced row echelon form:

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 3 & 2 & 4 \\ 1 & 1 & 2 & 0 & 3 & 1 \\ 0 & 0 & 1 & -1 & 1 & -1 \end{pmatrix} r_2 \mapsto r_2 - 2r_1 \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 & 0 & 2 \\ 0 & 1 & 1 & -1 & 2 & 0 \\ 0 & 0 & 1 & -1 & 1 & -1 \end{pmatrix} r_3 \mapsto r_3 - r_2 \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 & 0 & 2 \\ 0 & 0 & 2 & -2 & 2 & -2 \\ 0 & 0 & 1 & -1 & 1 & -1 \end{pmatrix}$$

$$r_{3} \mapsto r_{3}/2 \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} r_{1} \mapsto r_{1} - r_{3} \begin{pmatrix} 1 & 0 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Thus $(x, y, z, u, v)^{\mathrm{T}}$ is a solution of $A\underline{x} = y \iff z = u - v - 1, \ y = -v + 1, \ x = -2u + 2 \iff (x, y, z, u, v)^{\mathrm{T}} = (-2u, -v, u - v, u, v)^{\mathrm{T}} + (2, 1, -1, 0, 0)^{T} = u(-2, 0, 1, 1, 0)^{\mathrm{T}} + v(0, -1, -1, 0, 1)^{\mathrm{T}} + (2, 1, -1, 0, 0)^{T}$, where u, v are arbitrary real constants, so the solution set is the 2-dimensional affine space span{ $(-2, 0, 1, 1, 0)^{\mathrm{T}}, (0, -1, -1, 0, 1)^{\mathrm{T}} \} + (2, 1, -1, 0, 0)^{T}$.

7(a) (2 points): Find all eigenvalues and corresponding eigenvectors for the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

Solution: The eigenvalues are the roots of det $\begin{pmatrix} 1-\lambda & 2 & 3\\ 0 & 1-\lambda & 1\\ 0 & 0 & 2-\lambda \end{pmatrix} = 0$; i.e. $(1-\lambda)^2(2-\lambda) = 0$; i.e. eigenvalues are $\lambda = 1$ (with multiplicity 2) and $\lambda = 2$. If $\lambda = 1$ the eigenvectors are the non-zero solutions of the homogeneous linear system with matrix $\begin{pmatrix} 0 & 2 & 3\\ 0 & 0 & 1\\ 0 & 0 & 1 \end{pmatrix}$ which has the null space spanned by \underline{e}_1 ; i.e. the set of all eigenvectors is just the set of all non-zero multiples of the vector e_1 .

For $\lambda = 2$ the eigenvectors are the non-zero solutions of the homogeneous linear system with matrix $\begin{pmatrix} -1 & 2 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ which has rref $\begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ and hence the null space is spanned by $(5, 1, 1)^{\mathrm{T}}$; i.e.

the set of all eigenvectors is just the set of all non-zero multiples of the vector $(5, 1, 1)^{T}$.

7 (b) (3 points): Show that the system of two non-linear equations

$$(x^{2} - y^{2})y + 7x = 1$$

 $(x^{2} - y^{2})x + 5y = 1$

has a solution (x, y) with $x^2 + y^2 < 1$.

Hint: Define $f(x,y) = \left(\frac{1}{7}\left(1 - (x^2 - y^2)y\right), \frac{1}{5}\left(1 - (x^2 - y^2)x\right)\right)$ and start by proving that f is a contraction mapping $D \to D$, where $D = \{(x,y) : x^2 + y^2 \le 1\}$.

Solution: With f as in the hint we have $||f(x,y)|| \leq |\frac{1}{7}(1-(x^2-y^2)y)|+|\frac{1}{5}(1-(x^2-y^2)x)| \leq \frac{2}{7}+\frac{2}{5} < 1$, so in fact f maps the closed disc D into the open disc \check{D} . Also the derivative matrix Df(x,y) (with columns $D_x f^T(x,y)$ and $D_y f^T(x,y)$) is $\begin{pmatrix} -2xy/7 & (-x^2+3y^2)/7 \\ (-3x^2+y^2)/5 & 2xy/5 \end{pmatrix}$ and so $||Df(x,y)||^2 = 4x^2y^2(1/49+1/25)+(3y^2-x^2)^2/49+(y^2-3x^2)^2/25 \leq 4/49+4/25+9/49+9/25 = 13/49+13/25 < 1$ for $x^2+y^2 \leq 1$, so since (from lecture) $||f(x,y) - f(a,b)|| \leq \max_{(\xi,\eta)\in D} ||Df(\xi,\eta)|| ||(x,y) - (a,b)||$ for each (x,y), $(a,b) \in D$, we have shown that f is a contraction. The contraction mapping theorem then tells us that f has a fixed point in D and a fixed point (x,y) of f clearly satisfies the given equations. Notice that the fixed point is actually in the open disk $x^2 + y^2 < 1$ because we proved above that f maps D into the open disk.

8(a) (2 points): Let A be an $n \times n$ real matrix (a_{ij}) . Define the adjoint matrix adj A and give the proof that $A adj A = (\det A)I$.

Solution: adj A is the $n \times n$ matrix which has $(-1)^{i+j} \det A_{ji}$ in the *i*-th row and *j*-th column, where A_{ij} is the $(n-1) \times (n-1)$ matrix obtained by deleting the *i*-th row and *j*-th column of A. From lecture we have the formulae for the expansion of det A along the *j*-th row of A:

(*)
$$\sum_{k=1}^{n} a_{jk}((-1)^{j+k} \det A_{jk}) = \det A, \quad j = 1, \dots, n,$$

and hence

$$\sum_{k=1}^{n} a_{\ell k} ((-1)^{j+k} \det A_{jk}) = 0 \quad \ell \neq j$$

because by (*) it is the expression for determinant of the matrix \tilde{A} which is the same as A except that it has row ℓ of A in both the ℓ -th and the j-th row. Thus

$$\sum_{k=1}^{n} a_{ik}((-1)^{j+k} \det A_{jk}) = \det A \,\delta_{ij}, \ i, j = 1, \dots, n.$$

On the other hand the expression on the left of the previous identity is exactly the element which appears in the *i*-th row and *j*-th column of $A \operatorname{adj} A$ and the expression on the right is exactly the element which appears in the *i*-th row and *j*-th column of det A I, so we have proved $A \operatorname{adj} A = \det A I$.

8(b) (3 points): Show that $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 4y^2 + z^2 = 1\}$ is a 2-dimensional C^1 manifold and find a point $\underline{a} \in S$ at which the function f(x, y, z) = xyz takes its maximum.

Note: You should begin by discussing the existence of such a point $a \in S$.

Solution: Let $g(x, y, z) = x^2 + 4y^2 + z^2 - 1$, so $S = \{(x, y, z) \in \mathbb{R}^3 : g(x, y, z) = 0\}$, and note that $Dg(x, y, z) = (2x, 8y, 2y) \neq (0, 0, 0)$ on S, hence by a result of lecture (the corollary of the implicit function theorem) S is a 2 dimensional C^1 manifold. S is clearly closed and bounded (indeed $(x, y, z) \in S \Rightarrow x^2 + y^2 + z^2 \leq x^2 + 4y^2 + z^2 \leq 1$ and of course any limit point of S is evidently in S by continuity of g). Thus f|S attains its maximum (since a continuous function on a closed bounded set attains its maximum).

According to the Lagrange multiplier result, at any critical point of f|S (and in particular at any local max/min of f|S) we must have $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$, where as above $g = x^2 + 4y^2 + z^2 - 1$. Thus at any local max/min of f|S we must have $(yz, xz, xy) = \lambda(2x, 8y, 2z)$; i.e. we have the 3 equations $yz = 2\lambda x, xz = 8\lambda y, xy = 2\lambda z$ and by multiplying the first by x, the second by y, and the third by z we get either $\lambda = 0$ or $x^2 = 4y^2 = z^2$. But $\lambda = 0$ implies that yz = xz = xy = 0 which implies that xyz = 0 so this cannot happen at a maximum of xyz because there are values where xyz is positive on S and hence the maximum (which exists by the discussion above) must be positive. Thus at a max we have $x^2 = 4y^2 = z^2$, which, since $x^2 + 4y^2 + z^2 = 1$, gives $x^2 = 4y^2 = z^2 = \frac{1}{3}$, and the value of f at any such point is $\pm \frac{1}{6\sqrt{3}}$ so the maximum is $\frac{1}{6\sqrt{3}}$ and is attained at $(x, y, z) = (\frac{1}{\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{\sqrt{3}})$ (and also at several other points, e.g. $(x, y, z) = (\frac{-1}{\sqrt{3}}, \frac{-1}{2\sqrt{3}}, \frac{1}{\sqrt{3}})$).