Mathematics Department Stanford University
 Math 51H Final Examination, December 9, 2013

3 Hours

Solutions
Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded

Name (Print Clearly):

I understand and accept the provisions of the honor code (Signed)

1 (a) (2 points): Calculate the determinant of

$$
\left(\begin{array}{cccc}
11 & 12 & 13 & 426 \\
2001 & 2002 & 2003 & 421 \\
2 & 1 & 0 & -419 \\
101 & 101 & 102 & 2000
\end{array}\right)
$$

No calculators: Clearly state all column/row operations.

Solution:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
11 & 12 & 13 & 426 \\
2001 & 2002 & 2003 & 421 \\
2 & 1 & 0 & -419 \\
101 & 101 & 102 & 2000
\end{array}\right)\binom{c_{2} \mapsto c_{2}-c_{1}}{c_{3} \mapsto c_{3}-c_{1}}\left(\begin{array}{cccc}
11 & 1 & 2 & 426 \\
2001 & 1 & 2 & 421 \\
2 & -1 & -2 & -419 \\
101 & 0 & 1 & 2000
\end{array}\right) \\
& \binom{r_{2} \mapsto r_{2}-r_{1}}{r_{3} \mapsto r_{3}-r_{1}}\left(\begin{array}{cccc}
11 & 1 & 2 & 426 \\
1990 & 0 & 0 & -5 \\
13 & 0 & 0 & 7 \\
101 & 0 & 1 & 2000
\end{array}\right)
\end{aligned}
$$

Now none of the above operations changes the determinant so we can just compute the determinant of the last matrix above, and expanding this down the second column gives

$$
-\operatorname{det}\left(\begin{array}{ccc}
1990 & 0 & -5 \\
13 & 0 & 7 \\
101 & 1 & 2000
\end{array}\right)=+\operatorname{det}\left(\begin{array}{cc}
1990 & -5 \\
13 & 7
\end{array}\right)=7 \times 1990+5 \times 13=13,930+65=13,995 .
$$

(b) (3 points): Find the matrix of the orthogonal projection onto the plane $V=\left\{(x, y, z) \in \mathbb{R}^{3}\right.$: $2 x+y-z=0\}$.
Hint: Start by finding the orthogonal projection onto the (1-dimensional) normal space V^{\perp}.
The given plane V is $\left(\begin{array}{c}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)=0$, i.e. the plane is the set of all points orthogonal to the vector $\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$, and so V^{\perp} is the 1-dimensional space spanned by the unit vector $\frac{1}{\sqrt{6}}\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$, and the othogonal projection onto the normal space is the map taking the vector $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ to the vector $\frac{1}{6}\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$ which is the linear transformation with matrix $\frac{1}{6}\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)(2,1,-1)=$ $\frac{1}{6}\left(\begin{array}{ccc}4 & 2 & -2 \\ 2 & 1 & -1 \\ -2 & -1 & 1\end{array}\right)$, and the orthogonal projection onto V has matrix I - this matrix; i.e. $\frac{1}{6}\left(\begin{array}{ccc}2 & -2 & 2 \\ -2 & 5 & 1 \\ 2 & 1 & 5\end{array}\right)$.
2. (a) (2 points): If $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{1} and if $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is also C^{1}, prove that the velocity vector $\Gamma^{\prime}(t)$ of the curve $\Gamma(t)=\binom{\gamma(t)}{u(\gamma(t))}$ is orthogonal to the vector $\binom{\nabla u(\gamma(t))}{-1}$ for each $t \in \mathbb{R}$.

Solution: By the chain rule $\frac{d}{d t}(u(\gamma(t)))=\sum_{j=1}^{n} D_{j} u(\gamma(t)) \gamma_{j}^{\prime}(t)=\gamma^{\prime}(t) \cdot \nabla u(\gamma(t))$, so $\Gamma^{\prime}(t)=$ $\binom{\gamma^{\prime}(t)}{\gamma^{\prime}(t) \cdot \nabla u(\gamma(t))}$, and hence $\Gamma^{\prime}(t) \cdot\binom{\nabla u(\gamma(t))}{-1}=\nabla u(\gamma(t)) \cdot \gamma^{\prime}(t)-\nabla u(\gamma(t)) \cdot \gamma^{\prime}(t)=0$.
(b) (3 points) Let e^{x} be defined as usual by $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for $x \in \mathbb{R}$. Prove:
(i) $\lim _{x \rightarrow 0}|x|^{-p} e^{-1 / x^{2}}=0$ for each $p>0$.

Note: You can of course assume, without giving the proof, the standard property $e^{u+v}=e^{u} e^{v}$ (so in particular $\left.e^{-u}=1 / e^{u}\right)$.
(ii) If $f(x)=e^{-1 / x^{2}}$ for $x \neq 0$ and $f(0)=0$, find the Taylor series $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$ of f.

Hint for (ii): Start by checking (by induction on n) that for $x \neq 0$ each derivative $f^{(n)}(x)$ has the form $p_{n}(1 / x) e^{-1 / x^{2}}$, where p_{n} is a polynomial.

Solution (i): Observe first that, for $y>0, e^{y}=\sum_{n=0}^{\infty} \frac{y^{n}}{n!} \geq \frac{y^{q}}{q!}$ for each $q=1,2, \ldots$, so in particular $e^{-1 / x^{2}} \leq q!x^{2 q}$ for any $x \neq 0$ and any $q=1,2, \ldots$, and hence $|x|^{-p} e^{\frac{-1}{x^{2}}} \leq q!|x|^{2 q-p} \rightarrow 0$ as $x \rightarrow 0$ if we take $q>p / 2$.

Solution (ii): Let P_{n} be the proposition that the hint is true, $n=1,2, \ldots$. By the chain rule $f^{\prime}(x)=2 x^{-3} e^{-1 / x^{2}}$ for $x \neq 0$, so P_{1} is true with $p_{1}(t)=2 t^{3}$. If P_{n} is true then we have $f^{(n)}(x)=p_{n}(1 / x) e^{-1 / x^{2}}$ for $x \neq 0$, and by the product rule for differentiation we get $f^{(n+1)}(x)=\left(2 x^{-3} p_{n}(1 / x)-x^{-2} p_{n}^{\prime}(1 / x)\right) e^{-1 / x^{2}}$, so P_{n+1} is true with $p_{n+1}(t)=2 t^{3} p_{n}(t)-t^{2} p_{n}^{\prime}(t)$. Now by (i) all derivatives $f^{(n)}(0)=0$ because (i) implies $f^{(n+1)}(0)=\lim _{x \rightarrow 0} x^{-1}\left(f^{(n)}(x)-f^{(n)}(0)\right)=$ $\lim _{x \rightarrow 0} x^{-1} p_{n}(1 / x) e^{-1 / x^{2}}=0$ (and the limit does exist by induction on n starting at $n=0$). Hence the Taylor series is 0 (the identically zero function).

3 (a) (2 points): Define the term "open set" in \mathbb{R}^{n}, and prove that the intersection $U \cap V$ of 2 open sets U, V is again an open set.
Solution: Let $\left(x_{0}, y_{0}\right) \in U \cap V$. Then since $\left(x_{0}, y_{0}\right) \in U$ there is $\delta_{1}>0$ such that the ball $B_{\delta_{1}}\left(x_{0}, y_{0}\right) \subset U$ and similarly there is a ball $B_{\delta_{2}}\left(x_{0}, y_{0}\right) \subset V$ for some $\delta_{2}>0$, and so taking $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}(>0)$ we have $B_{\delta}\left(x_{0}, y_{0}\right) \subset$ both U and V; i.e. $B_{\delta}\left(x_{0}, y_{0}\right) \subset U \cap V$.

3 (b) (3 points): If $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are both continuous, and if $S=\left\{\underline{x} \in \mathbb{R}^{n}\right.$: $\varphi(\underline{x})=0\}$ is bounded, prove there is a point $\underline{a} \in S$ such that $f(\underline{x}) \leq f(\underline{a}) \forall \underline{x} \in S$.

Solution: We claim that S is closed. Let y be a limit point of S, so there is a sequence $\underline{x}_{k} \rightarrow y$ with $\underline{x}_{k} \in S$ for each k. Then $\varphi\left(\underline{x}_{k}\right)=0$ and by continuity of φ we have $\varphi(y)=\lim _{k \rightarrow \infty} \varphi\left(\underline{x}_{k}\right)=0$, so $y \in S$ and we have shown that S is closed. Thus S is a closed bounded set (i.e. a compact set), and hence by a theorem from lecture $f \mid S$ attains its maximum value somewhere on S; that is, there is a point $\underline{a} \in S$ such that $f(\underline{x}) \leq f(\underline{a})$ for each $\underline{x} \in S$.

4(a) (3 points): State (without proof) the Spectral Theorem for a real symmetric $n \times n$ matrix A, and use it to prove that for a given quadratic form $H(\underline{x})=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}\left(a_{i j}=a_{j i}\right.$ real) there is a change of coordinates $y=Q^{\mathrm{T}} \underline{x}$ with Q orthogonal (i.e. $Q^{T} Q=Q Q^{T}=I$) such that the quadratic form $H(\underline{x})$ is transformed to an expression of the form $\sum_{j=1}^{n} \lambda_{j} y_{j}^{2}$ for suitable real $\lambda_{1}, \ldots, \lambda_{n}$.
Solution: The spectral theorem states that if A is a symmetric $n \times n$ matrix then there is an othonormal basis $\underline{v}_{1}, \ldots, \underline{v}_{n}$ for \mathbb{R}^{n} such that for each j there is a real λ_{j} with $A \underline{v}_{j}=\lambda_{j} \underline{v}_{j}$ (i.e. each \underline{v}_{j} is an eigenvector of A).
Let Q be the matrix with columns $\underline{v}_{1}, \ldots, \underline{v}_{n}$ and observe that the j 'th column of $A Q$ is then $A \underline{v}_{j}=\lambda_{j} \underline{v}_{j}$ and hence $Q^{\mathrm{T}}(A Q)$ has entry $\underline{v}_{i} \cdot\left(\lambda_{j} \underline{v}_{j}\right)$ in the i 'th row and j 'th column; i.e. $\lambda_{j} \delta_{i j}$, where $\delta_{i j}=1$ if $i=j$ and $=0$ if $i \neq j$. That is $Q^{T} A Q$ is the diagonal matrix with the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ down the leading diagonal. Observe also that the entry of $Q^{\mathrm{T}} Q$ in the i 'th row and j 'th column is $\underline{v}_{i} \cdot \underline{v}_{j}=\delta_{i j}$; that is $Q^{\mathrm{T}} Q=I$, so Q is indeed an orthogonal matrix.
The quadratic form $\sum_{i, j} a_{i j} x_{i} x_{j}=\underline{x}^{\mathrm{T}} A \underline{x}$, and with $y=Q^{\mathrm{T}} \underline{x}$ (i.e. $\underline{x}=Q y$), this is $y^{\mathrm{T}} Q^{\mathrm{T}} A Q y=$ $y^{\mathrm{T}} D y$, where D is the diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n}$ down the leading diagonal, so in terms of y the quadratic form is just $\sum_{j=1}^{n} \lambda_{j} y_{j}^{2}$ as claimed.
(b) (2 points). Find the inverse of the matrix

Solution:

$$
A=\left(\begin{array}{ccc}
1 & 3 & -1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

$$
\begin{gathered}
\left(\begin{array}{ccc|ccc}
1 & 3 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 1
\end{array}\right) \underset{r_{3}}{ } \mapsto \frac{1}{2} \underline{r}_{3}\left(\begin{array}{ccc|ccc}
1 & 3 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & \frac{1}{2}
\end{array}\right) \\
r_{1} \mapsto r_{1}-3 r_{2}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & -3 & \frac{1}{2} \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & \frac{1}{2}
\end{array}\right)
\end{gathered}
$$

so the inverse is $\left(\begin{array}{ccc}1 & -3 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2}\end{array}\right)$
$\mathbf{5}(\mathbf{a})$ (2 points): Give the " (ε, δ) definition" of continuity of a function $f:(a, b) \rightarrow \mathbb{R}$ at a point $c \in(a, b)$, and using the definition prove that if $f:(0,1) \rightarrow \mathbb{R}$ is continuous at a point $c \in(0,1)$ and if $f(c)=1$ then there is $\delta>0$ such that $f(x)>\frac{1}{2}$ for all $x \in(c-\delta, c+\delta)$.

Solution: Definition: For each $\varepsilon>0$ there is a $\delta \in(0, \min \{c, 1-c\})$ such that $|x-c|<\delta \Rightarrow$ $|f(x)-f(c)|<\varepsilon$. Thus $f(c)-\varepsilon<f(x)<f(c)+\varepsilon$ whenever $|x-c|<\delta$, so in particular using this with $f(c)=1$ and $\varepsilon=\frac{1}{2}$ we have that there is a $\delta>0$ such that $\frac{1}{2}<f(x)$ whenever $|x-c|<\delta$.
$\mathbf{5}(\mathbf{b})$ (3 points): Prove that the function $f(x, y)=1-2 x-y+4 x^{2}+4 x y+2 y^{2}+3 x y \sin x y$ has a critical point at $(x, y)=\left(\frac{1}{4}, 0\right)$ and that f has a local minimum there.

Solution: The gradient $\nabla f(x, 0)$ is $(-2+8 x,-1+4 x)^{\mathrm{T}}=\underline{0}$ at $x=\frac{1}{4}$, so $(x, y)=\left(\frac{1}{4}, 0\right)$ is a critical point as claimed. Now the Hessian at $(x, y)=\left(\frac{1}{4}, 0\right)$ is $\left(\begin{array}{cc}8 & 4 \\ 4 & 4+\frac{6}{16}\end{array}\right)=\left(\begin{array}{cc}8 & 4 \\ 4 & \frac{35}{8}\end{array}\right)$ and hence the Hessian quadratic form is $8 y_{1}^{2}+(35 / 8) y_{2}^{2}+8 y_{1} y_{2} \geq 4 y_{1}^{2}+4\left(y_{1}^{2}+y_{2}^{2}+2 y_{1} y_{2}\right)=4 y_{1}^{2}+\left(y_{1}+y_{2}\right)^{2}>0$ for $\left(y_{1}, y_{2}\right) \neq(0,0)$, so by the second derivative test f has a strict local min at $(x, y)=\left(\frac{1}{4}, 0\right)$. (We proved generally that if \underline{a} is a critical point f and if the Hessian of f at \underline{a} is positive definite, then the function has a strict local minimum at \underline{a}.)

6 (a) (2 points): Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors $\underline{v}_{1}=(1,1,0,0)^{\mathrm{T}}, \underline{v}_{2}=(0,1,1,0)^{\mathrm{T}}, v_{3}=(0,0,1,1)^{\mathrm{T}}$.

Solution: It is better to use the order $\underline{v}_{1}, \underline{v}_{3}, \underline{v}_{2}$, because $\underline{v}_{1}, \underline{v}_{3}$ are already orthogonal, and so the normalized vectors $\underline{w}_{1}=\frac{1}{\sqrt{2}} v_{1}, \underline{w}_{2}=\frac{1}{\sqrt{2}} v_{3}$, are already orthonormal, and the Gram-Schmidt process requires only one further step $\underline{w}_{3}=\left\|\underline{v}_{2}-\underline{w}_{1} \cdot \underline{v}_{2} \underline{w}_{1}-\underline{w}_{2} \cdot \underline{v}_{2} \underline{w}_{2}\right\|^{-1}\left(\underline{v}_{2}-\underline{w}_{1} \cdot \underline{v}_{2} \underline{w}_{1}-\underline{w}_{2} \cdot \underline{v}_{2} \underline{w}_{2}\right)=$ $\left\|(0,1,1,0)^{\mathrm{T}}-\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{\mathrm{T}}\right\|^{-1}\left((0,1,1,0)^{\mathrm{T}}-\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{\mathrm{T}}\right)=\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)^{\mathrm{T}}$.
Thus the required orthonormal basis is $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0\right)^{\mathrm{T}},\left(0,0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{\mathrm{T}},\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)^{\mathrm{T}}$.
(b) (3 points): Find the set of all solutions of the inhomogeneous system $A \underline{x}=y$ where

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & 1 \\
2 & 1 & 1 & 3 & 2 \\
1 & 1 & 2 & 0 & 3 \\
0 & 0 & 1 & -1 & 1
\end{array}\right) \quad y=\left(\begin{array}{r}
1 \\
4 \\
1 \\
-1
\end{array}\right)
$$

(Give your answer as an affine space.)
Solution: Consider the augmented matrix

$$
\left(\begin{array}{ccccc|c}
1 & 0 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 3 & 2 & 4 \\
1 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 1 & -1 & 1 & -1
\end{array}\right)
$$

To compute the solution set, as in lecture we use elementary row operations on the augmented matrix which reduce A to reduced row echelon form:

$$
\begin{aligned}
& \left(\begin{array}{ccccc|c}
1 & 0 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 3 & 2 & 4 \\
1 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 1 & -1 & 1 & -1
\end{array}\right) \begin{array}{c}
r_{2} \mapsto r_{2}-2 r_{1} \\
r_{3} \mapsto r_{3}-r_{1}
\end{array}\left(\begin{array}{ccccc|c}
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & 1 & 0 & 2 \\
0 & 1 & 1 & -1 & 2 & 0 \\
0 & 0 & 1 & -1 & 1 & -1
\end{array}\right) r_{3} \mapsto r_{3}-r_{2}\left(\begin{array}{ccccc|c}
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & 1 & 0 & 2 \\
0 & 0 & 2 & -2 & 2 & -2 \\
0 & 0 & 1 & -1 & 1 & -1
\end{array}\right) \\
& \begin{array}{c}
r_{3} \mapsto r_{3} / 2 \\
r_{4} \mapsto r_{4}-r_{3} / 2
\end{array}\left(\begin{array}{ccccc|c}
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & 1 & 0 & 2 \\
0 & 0 & 1 & -1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
r_{1} \mapsto r_{1}-r_{3} \\
r_{2} \mapsto r_{2}+r_{3}\left(\begin{array}{ccccc|c}
1 & 0 & 0 & 2 & 0 & 2 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), ~(1)
\end{array}
\end{aligned}
$$

Thus $(x, y, z, u, v)^{\mathrm{T}}$ is a solution of $A \underline{x}=y \Longleftrightarrow z=u-v-1, y=-v+1, x=-2 u+2 \Longleftrightarrow$ $(x, y, z, u, v)^{\mathrm{T}}=(-2 u,-v, u-v, u, v)^{\mathrm{T}}+(2,1,-1,0,0)^{T}=u(-2,0,1,1,0)^{\mathrm{T}}+v(0,-1,-1,0,1)^{\mathrm{T}}+$ $(2,1,-1,0,0)^{T}$, where u, v are arbitrary real constants, so the solution set is the 2-dimensional affine space $\operatorname{span}\left\{(-2,0,1,1,0)^{\mathrm{T}},(0,-1,-1,0,1)^{\mathrm{T}}\right\}+(2,1,-1,0,0)^{T}$.
$7(\mathbf{a})$ (2 points): Find all eigenvalues and corresponding eigenvectors for the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.
Solution: The eigenvalues are the roots of det $\left(\begin{array}{ccc}1-\lambda & 2 & 3 \\ 0 & 1-\lambda & 1 \\ 0 & 0 & 2-\lambda\end{array}\right)=0$; i.e. $(1-\lambda)^{2}(2-\lambda)=0$; i.e. eigenvalues are $\lambda=1$ (with multiplicity 2) and $\lambda=2$. If $\lambda=1$ the eigenvectors are the nonzero solutions of the homogeneous linear system with matrix $\left(\begin{array}{lll}0 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$ which has the null space spanned by \underline{e}_{1}; i.e. the set of all eigenvectors is just the set of all non-zero multiples of the vector e_{1}.

For $\lambda=2$ the eigenvectors are the non-zero solutions of the homogeneous linear system with matrix $\left(\begin{array}{ccc}-1 & 2 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ which has rref $\left(\begin{array}{ccc}1 & 0 & -5 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right)$ and hence the null space is spanned by $(5,1,1)^{\mathrm{T}}$; i.e. the set of all eigenvectors is just the set of all non-zero multiples of the vector $(5,1,1)^{\mathrm{T}}$.

7 (b) (3 points): Show that the system of two non-linear equations

$$
\begin{aligned}
& \left(x^{2}-y^{2}\right) y+7 x=1 \\
& \left(x^{2}-y^{2}\right) x+5 y=1
\end{aligned}
$$

has a solution (x, y) with $x^{2}+y^{2}<1$.
Hint: Define $f(x, y)=\left(\frac{1}{7}\left(1-\left(x^{2}-y^{2}\right) y\right), \frac{1}{5}\left(1-\left(x^{2}-y^{2}\right) x\right)\right)$ and start by proving that f is a contraction mapping $D \rightarrow D$, where $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

Solution: With f as in the hint we have $\|f(x, y)\| \leq\left|\frac{1}{7}\left(1-\left(x^{2}-y^{2}\right) y\right)\right|+\left|\frac{1}{5}\left(1-\left(x^{2}-y^{2}\right) x\right)\right| \leq \frac{2}{7}+\frac{2}{5}<$ 1 , so in fact f maps the closed disc D into the open disc \breve{D}. Also the derivative matrix $D f(x, y)$ (with columns $D_{x} f^{T}(x, y)$ and $\left.D_{y} f^{T}(x, y)\right)$ is $\left(\begin{array}{cc}-2 x y / 7 & \left(-x^{2}+3 y^{2}\right) / 7 \\ \left(-3 x^{2}+y^{2}\right) / 5 & 2 x y / 5\end{array}\right)$ and so $\|D f(x, y)\|^{2}=$ $4 x^{2} y^{2}(1 / 49+1 / 25)+\left(3 y^{2}-x^{2}\right)^{2} / 49+\left(y^{2}-3 x^{2}\right)^{2} / 25 \leq 4 / 49+4 / 25+9 / 49+9 / 25=13 / 49+13 / 25<1$ for $x^{2}+y^{2} \leq 1$, so since (from lecture) $\|f(x, y)-f(a, b)\| \leq \max _{(\xi, \eta) \in D}\|D f(\xi, \eta)\|\|(x, y)-(a, b)\|$ for each $(x, y),(a, b) \in D$, we have shown that f is a contraction. The contraction mapping theorem then tells us that f has a fixed point in D and a fixed point (x, y) of f clearly satisfies the given equations. Notice that the fixed point is actually in the open disk $x^{2}+y^{2}<1$ because we proved above that f maps D into the open disk.

8(a) (2 points): Let A be an $n \times n$ real matrix $\left(a_{i j}\right)$. Define the adjoint matrix adj A and give the proof that $A \operatorname{adj} A=(\operatorname{det} A) I$.

Solution: adj A is the $n \times n$ matrix which has $(-1)^{i+j} \operatorname{det} A_{j i}$ in the i-th row and j-th column, where $A_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the i-th row and j-th column of A. From lecture we have the formulae for the expansion of $\operatorname{det} A$ along the j-th row of A :

$$
\begin{equation*}
\sum_{k=1}^{n} a_{j k}\left((-1)^{j+k} \operatorname{det} A_{j k}\right)=\operatorname{det} A, \quad j=1, \ldots, n \tag{*}
\end{equation*}
$$

and hence

$$
\sum_{k=1}^{n} a_{\ell k}\left((-1)^{j+k} \operatorname{det} A_{j k}\right)=0 \quad \ell \neq j
$$

because by $(*)$ it is the expression for determinant of the matrix \tilde{A} which is the same as A except that it has row ℓ of A in both the ℓ-th and the j-th row. Thus

$$
\sum_{k=1}^{n} a_{i k}\left((-1)^{j+k} \operatorname{det} A_{j k}\right)=\operatorname{det} A \delta_{i j}, i, j=1, \ldots, n
$$

On the other hand the expression on the left of the previous identity is exactly the element which appears in the i-th row and j-th column of A adj A and the expression on the right is exactly the element which appears in the i-th row and j-th column of $\operatorname{det} A I$, so we have proved $A \operatorname{adj} A=$ $\operatorname{det} A I$.

8(b) (3 points): Show that $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+4 y^{2}+z^{2}=1\right\}$ is a 2-dimensional C^{1} manifold and find a point $\underline{a} \in S$ at which the function $f(x, y, z)=x y z$ takes its maximum.
Note: You should begin by discussing the existence of such a point $\underline{a} \in S$.
Solution: Let $g(x, y, z)=x^{2}+4 y^{2}+z^{2}-1$, so $S=\left\{(x, y, z) \in \mathbb{R}^{3}: g(x, y, z)=0\right\}$, and note that $D g(x, y, z)=(2 x, 8 y, 2 y) \neq(0,0,0)$ on S, hence by a result of lecture (the corollary of the implicit function theorem) S is a 2 dimensional C^{1} manifold. S is clearly closed and bounded (indeed $(x, y, z) \in S \Rightarrow x^{2}+y^{2}+z^{2} \leq x^{2}+4 y^{2}+z^{2} \leq 1$ and of course any limit point of S is evidently in S by continuity of g). Thus $f \mid S$ attains its maximum (since a continuous function on a closed bounded set attains its maximum).

According to the Lagrange multiplier result, at any critical point of $f \mid S$ (and in particular at any local max $/ \mathrm{min}$ of $f \mid S$) we must have $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)$, where as above $g=x^{2}+4 y^{2}+z^{2}-1$. Thus at any local max $/ \min$ of $f \mid S$ we must have $(y z, x z, x y)=\lambda(2 x, 8 y, 2 z)$; i.e. we have the 3 equations $y z=2 \lambda x, x z=8 \lambda y, x y=2 \lambda z$ and by multiplying the first by x, the second by y, and the third by z we get either $\lambda=0$ or $x^{2}=4 y^{2}=z^{2}$. But $\lambda=0$ implies that $y z=x z=x y=0$ which implies that $x y z=0$ so this cannot happen at a maximum of $x y z$ because there are values where $x y z$ is positive on S and hence the maximum (which exists by the discussion above) must be positive. Thus at a max we have $x^{2}=4 y^{2}=z^{2}$, which, since $x^{2}+4 y^{2}+z^{2}=1$, gives $x^{2}=4 y^{2}=z^{2}=\frac{1}{3}$, and the value of f at any such point is $\pm \frac{1}{6 \sqrt{3}}$ so the maximum is $\frac{1}{6 \sqrt{3}}$ and is attained at $(x, y, z)=\left(\frac{1}{\sqrt{3}}, \frac{1}{2 \sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ (and also at several other points, e.g. $\left.(x, y, z)=\left(\frac{-1}{\sqrt{3}}, \frac{-1}{2 \sqrt{3}}, \frac{1}{\sqrt{3}}\right)\right)$.

