Mathematics Department Stanford University Math 51H - Contraction mapping theorem and ODEs

The contraction mapping theorem concerns maps $f: X \rightarrow X,(X, d)$ a metric space, and their fixed points. A point x is a fixed point of f if $f(x)=x$, i.e. f fixes x. A contraction mapping is a map $f: X \rightarrow X$ such that there is $\theta \in(0,1)$ such that $d(f(x), f(y)) \leq \theta d(x, y)$ for all $x, y \in X$.

Theorem 1 Suppose X is a complete metric space, and $f: X \rightarrow X$ is a contraction mapping. Then f has a unique fixed point x.

Remark 1 Note that if (Z, d) is a complete metric space and X is a closed subset, then X is complete (with the relative metric). Indeed, if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in X, then it is such in Z, thus it converges to some $x \in Z$. But then x is a limit point of X, and X is closed, so $x \in X$, proving the desired completeness (every Cauchy sequence in X converges to a point in X).

Remark 2 Note that any contraction mapping is (uniformly!) continuous; one can take $\delta=\varepsilon$ in the definition of continuity.

Proof of the Theorem: First suppose x, x^{\prime} are fixed points of f. Then $f(x)=x, f\left(x^{\prime}\right)=x^{\prime}$, so

$$
d\left(x, x^{\prime}\right)=d\left(f(x), f\left(x^{\prime}\right)\right) \leq \theta d\left(x, x^{\prime}\right)
$$

so $(1-\theta) d\left(x, x^{\prime}\right) \leq 0$, so $d\left(x, x^{\prime}\right) \leq 0$, so $d\left(x, x^{\prime}\right)=0$, so $x=x^{\prime}$, showing uniqueness.
We now turn to existence. To do so, take an arbitrary $x_{0} \in X$, and define x_{n} inductively: $x_{n+1}=f\left(x_{n}\right)$, $n \geq 0$. We claim that $\left\{x_{n}\right\}_{n=0}^{\infty}$ is Cauchy. To see this, notice first that for all $n \geq 1$,

$$
d\left(x_{n+1}, x_{n}\right)=d\left(f\left(x_{n}\right), f\left(x_{n-1}\right)\right) \leq \theta d\left(x_{n}, x_{n-1}\right)
$$

so by induction,

$$
d\left(x_{n+1}, x_{n}\right) \leq \theta^{n} d\left(x_{1}, x_{0}\right) .
$$

Thus, for $n>m$, using the triangle inequality,

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x_{n-1}\right)+\ldots+d\left(x_{m+1}, x_{m}\right) \leq\left(\theta^{n-1}+\theta^{n-2}+\ldots+\theta^{m}\right) d\left(x_{1}, x_{0}\right)
$$

Summing the finite geometric series,

$$
d\left(x_{n}, x_{m}\right) \leq \theta^{m}\left(1+\theta+\ldots+\theta^{n-m-1}\right) d\left(x_{1}, x_{0}\right)=\theta^{m} d\left(x_{1}, x_{0}\right) \frac{1-\theta^{n-m}}{1-\theta} \leq \theta^{m} \frac{d\left(x_{1}, x_{0}\right)}{1-\theta}
$$

Since $\lim _{m \rightarrow \infty} \theta^{m}=0$, we have that given $\varepsilon>0$ there exists N such that $m \geq N$ implies $\theta^{m}<$ $\varepsilon \frac{1-\theta}{1+d\left(x_{1}, x_{0}\right)}$, and thus for $n, m \geq N, d\left(x_{n}, x_{m}\right)<\varepsilon$, proving the Cauchy claim.
But X is complete, so $x=\lim _{n \rightarrow \infty} x_{n}$ exists. Since f is continuous and $\lim x_{n}=x$, sequential continuity shows that $\lim f\left(x_{n}\right)=f(x)$. But $f\left(x_{n}\right)=x_{n+1}$, so $\lim _{n \rightarrow \infty} x_{n+1}=f(x)$. Since $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}$, we deduce that $f(x)=x$, so x is a fixed point of f as claimed.
We now use this in the simplest ODE setting. An ODE (ordinary differential equation) is an equation of the form

$$
\begin{equation*}
x^{\prime}(t)=F(t, x(t)), x\left(t_{0}\right)=x_{0} \tag{1}
\end{equation*}
$$

where $F: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a given function, $t_{0} \in \mathbb{R}, x_{0} \in \mathbb{R}^{n}$, and one is looking for a solution x at least on an interval near t_{0}, say $\left[t_{0}-\delta, t_{0}+\delta\right], \delta>0$, so $x \in C^{1}\left(\left[t_{0}-\delta, t_{0}+\delta\right]\right)$. We impose the minimal requirement that F be continuous for the following discussion.
Rather than considering the ODE directly, we rewrite it as an integral equation using the fundamental theorem of calculus:

$$
x(t)=x\left(t_{0}\right)+\int_{t_{0}}^{t} x^{\prime}=x_{0}+\int_{t_{0}}^{t} F(\tau, x(\tau)) d \tau
$$

Note that any solution of the original ODE solves the integral equation

$$
\begin{equation*}
x(t)=x_{0}+\int_{t_{0}}^{t} F(\tau, x(\tau)) d \tau, \tag{2}
\end{equation*}
$$

and conversely if $x \in C^{0}\left(\left[t_{0}-\delta, t_{0}+\delta\right]\right)$ merely solving (2], then in fact x is C^{1} by the fundamental theorem of calculus (since F is continuous, being the composite of continuous functions!), and solves the ODE.
Thus, from now on we consider (2). We consider the equation as a fixed point claim for a map $T: X \rightarrow X, X=C^{0}\left(\left[t_{0}-\delta, t_{0}+\delta\right]\right)$. Concretely, let

$$
T x(t)=x_{0}+\int_{t_{0}}^{t} F(\tau, x(\tau)) d \tau
$$

so certainly $T: X \rightarrow X$. Now, as $d(x, y)=\sup \left\{\|x(t)-y(t)\|: t \in\left[t_{0}-\delta, t_{0}+\delta\right]\right\}$, we have

$$
\begin{aligned}
d(T x, T y) & =\sup \left\{\left\|\left(x_{0}+\int_{t_{0}}^{t} F(\tau, x(\tau)) d \tau\right)-\left(x_{0}+\int_{t_{0}}^{t} F(\tau, y(\tau)) d \tau\right)\right\|: t \in\left[t_{0}-\delta, t_{0}+\delta\right]\right\} \\
& \left.=\sup \left\{\| \int_{t_{0}}^{t}(F(\tau, x(\tau))-F(\tau, y(\tau))) d \tau\right) \|: t \in\left[t_{0}-\delta, t_{0}+\delta\right]\right\}
\end{aligned}
$$

So let us suppose that F is globally Lipschitz in the second variable, i.e. for some $\delta_{0}>0$,

$$
\begin{equation*}
\|F(t, x)-F(t, y)\| \leq M\|x-y\|, x, y \in \mathbb{R}^{n}, t \in\left[t_{0}-\delta_{0}, t_{0}+\delta_{0}\right] . \tag{3}
\end{equation*}
$$

Then, if $\delta \leq \delta_{0}, t \geq t_{0}$ (with a similar calculation if $t<t_{0}$)

$$
\begin{align*}
\left.\| \int_{t_{0}}^{t}(F(\tau, x(\tau))-F(\tau, y(\tau))) d \tau\right) \| & \leq \int_{t_{0}}^{t} \|\left(F(\tau, x(\tau))-F(\tau, y(\tau))\left\|d \tau \leq \int_{t_{0}}^{t} M\right\| x(\tau)-y(\tau) \| d \tau\right. \\
& \leq \int_{t_{0}}^{t} M \sup \left\{\|x(s)-y(s)\|: s \in\left[t_{0}-\delta, t_{0}+\delta\right]\right\} d \tau \tag{4}\\
& =M\left(t-t_{0}\right) \sup \left\{\|x(s)-y(s)\|: s \in\left[t_{0}-\delta, t_{0}+\delta\right]\right\} \\
& \leq M \delta \sup \left\{\|x(s)-y(s)\|: s \in\left[t_{0}-\delta, t_{0}+\delta\right]\right\}=M \delta d(x, y)
\end{align*}
$$

Thus,

$$
d(T x, T y) \leq M \delta d(x, y),
$$

so it is a contraction mapping provided $\delta<\frac{1}{M}$.
So take $\delta<1 / M, \delta \leq \delta_{0}$. Then T is a contraction mapping on the complete metric space $C^{0}\left(\left[t_{0}-\right.\right.$ $\left.\delta, t_{0}+\delta\right] ; \mathbb{R}^{n}$) (continuous maps from $\left[t_{0}-\delta, t_{0}+\delta\right]$ to \mathbb{R}^{n}), with completeness shown in Problem set 9 , Problem 7. Thus, it has a unique fixed point $x \in C^{0}\left(\left[t_{0}-\delta, t_{0}+\delta\right] ; \mathbb{R}^{n}\right)$, which as explained means that the ODE has a unique solution on $\left[t_{0}-\delta, t_{0}+\delta\right]$:

Theorem 2 Suppose F is globally Lipschitz on $\left[t_{0}-\delta_{0}, t_{0}+\delta_{0}\right] \times \mathbb{R}^{n}$ in the sense of (3). Then there is $\delta>0, \delta \leq \delta_{0}$ such that the $O D E$ (1) has a unique C^{1} solution on $\left[t_{0}-\delta, t_{0}+\delta\right]$.

This is the simplest local existence and uniqueness theorem for ODE. The only unsatisfactory assumption in it is (3). Notice that the estimate of (3) is a very reasonable assumption locally, namely if it is replaced by

$$
\begin{equation*}
\|F(t, x)-F(t, y)\| \leq M\|x-y\|, x, y \in \bar{B}_{R}(0), t \in\left[t_{0}-\delta_{0}, t_{0}+\delta_{0}\right], \tag{5}
\end{equation*}
$$

where $\bar{B}_{R}(0)$ is the closed ball of radius R in $\mathbb{R}^{n}: \bar{B}_{R}(0)=\left\{x \in \mathbb{R}^{n}:\|x\| \leq R\right\}$. Indeed, in this case it follows from F being C^{1}, since by the fundamental theorem of calculus, just as in our proof of Taylor's theorem,

$$
F(t, x)-F(t, y)=\sum_{j=1}^{n}\left(x_{j}-y_{j}\right) \int_{0}^{1} D_{j} F(t, y+s(x-y)) d s=\int_{0}^{1} D F(t, y+s(x-y))(x-y) d s
$$

where D_{j}, D denote derivatives in the second slot. Thus,

$$
\begin{aligned}
\|F(t, x)-F(t, y)\| & \leq \int_{0}^{1}\|D F(t, y+s(x-y))(x-y)\| d s \\
& \leq \int_{0}^{1}\|D F(t, y+s(x-y))\|\|x-y\| d s=\|x-y\| \int_{0}^{1}\|D F(t, y+s(x-y))\| d s
\end{aligned}
$$

so if F is C^{1}, so $D_{j} F$ are bounded on the compact set $\left[t_{0}-\delta_{0}, t_{0}+\delta_{0}\right] \times \bar{B}_{R}(0)$,

$$
\|F(t, x)-F(t, y)\| \leq C\|x-y\|, C=\sup \left\{\|D F(z)\|: z \in\left[t_{0}-\delta_{0}, t_{0}+\delta_{0}\right] \times \bar{B}_{R}(0)\right\}
$$

The more natural ODE theorem is then:

Theorem 3 Suppose F is locally Lipschitz on $\left[t_{0}-\delta_{0}, t_{0}+\delta_{0}\right] \times \bar{B}_{R}(0), R>0$, in the sense of (5). Then there is $\delta>0, \delta \leq \delta_{0}$ such that for $x_{0} \in \bar{B}_{R / 2}(0)$ the ODE (1) has a unique C^{1} solution on $\left[t_{0}-\delta, t_{0}+\delta\right]$ with $\|x(t)\| \leq R$ on $\left[t_{0}-\delta, t_{0}+\delta\right]$.

Proof: Let $C_{0}=\sup \left\{\|F(z)\|: \in\left[t_{0}-\delta_{0}, t_{0}+\delta_{0}\right] \times \bar{B}_{R}(0)\right\}$. Then for $\left\|x_{0}\right\| \leq R / 2, \delta \leq \delta_{0}, x \in$ $C^{0}\left(\left[t_{0}-\delta, t_{0}+\delta\right] ; \mathbb{R}^{n}\right)$ with $\|x(t)\| \leq R$ for $t \in\left[t_{0}-\delta, t_{0}+\delta\right]$, and for $t \geq t_{0}$ (with a similar formula for $t<t_{0}$),

$$
\|(T x)(t)\| \leq\left\|x_{0}\right\|+\int_{t_{0}}^{t} \| F\left(\tau, x(\tau) \| d \tau \leq R / 2+C_{0}\left(t-t_{0}\right) \leq R / 2+C_{0} \delta\right.
$$

Thus, if $\delta<R /\left(2 C_{0}+1\right)$, then

$$
\|(T x)(t)\| \leq R, t \in\left[t_{0}-\delta, t_{0}+\delta\right]
$$

Thus, if we let $X=\left\{x \in C^{0}\left(\left[t_{0}-\delta, t_{0}+\delta\right] ; \mathbb{R}^{n}\right): \sup \|x\| \leq R\right\}$, then $T: X \rightarrow X$ provided $\delta<R /\left(2 C_{0}+1\right)\left(\right.$ and $\left.\delta \leq \delta_{0}\right)$.
Further, for $x \in X$, we have by (5)

$$
\|F(t, x(t))-F(t, y(t))\| \leq M\|x(t)-y(t)\|, t \in\left[t_{0}-\delta, t_{0}+\delta\right]
$$

so the calculation of (4) applies. This gives that if in addition $\delta<M^{-1}$ then T is a contraction mapping, and thus the contraction mapping theorem gives a unique fixed point. This gives a unique solution to the ODE with the property that $\|x(t)\| \leq R$ for $t \in\left[t_{0}-\delta, t_{0}+\delta\right]$, and proves the theorem.

