Mathematics Department Stanford University
 Math $\mathbf{5 1 H}$ - Chain rule

As a warm up to the chain rule, let's talk about the composition of continuous functions.
Theorem 1 Suppose $\left(X, d_{X}\right),\left(Y, d_{Y}\right),\left(Z, d_{Z}\right)$ are metric spaces, $f: X \rightarrow Y$ is continuous at $a \in X$, $g: Y \rightarrow Z$ is continuous at $f(a) \in Y$. Then $g \circ f: X \rightarrow Z$ is continuous at a.

Proof: Given $\varepsilon>0$ take $\delta^{\prime}>0$ using the definition of continuity of g at $f(a)$ so $d_{Y}(y, f(a))<\delta^{\prime}$ implies $d_{Z}(g(y), g(f(a)))<\varepsilon$, and then take $\delta>0$ using the definition of continuity of f at a for δ^{\prime}, so $d_{X}(x, a)<\delta$ implies $d_{Y}(f(x), f(a))<\delta^{\prime}$. Then $d_{X}(x, a)<\delta$ implies $d_{Z}(g(f(x)), g(f(a))<\varepsilon$, giving the desired continuity.
We are now ready for the chain rule.
Theorem 2 Suppose $U \subset \mathbb{R}^{n}, V \subset \mathbb{R}^{m}$ are open, $f: U \rightarrow V, g: V \rightarrow \mathbb{R}^{p}, x \in U, f$ differentiable at x, g differentiable at $f(x)$. Then $g \circ f$ is differentiable at x with

$$
(D(g \circ f))(x)=(D g)(f(x))(D f)(x) .
$$

Proof: Write

$$
f(x+h)=f(x)+(D f)(x) h+R_{f}(x, h),
$$

i.e. define $R_{f}(x, h)=f(x+h)-(f(x)+(D f)(x) h)$, so the differentiability of f at x is equivalent to: for all $\varepsilon_{f}>0$ there is $\delta_{f}=\delta_{f}\left(\varepsilon_{f}\right)>0$ such that

$$
\|h\|<\delta_{f} \Rightarrow\left\|R_{f}(x, h)\right\| \leq \varepsilon_{f}\|h\| .
$$

Similarly, write

$$
g(y+k)=g(y)+(D g)(y) k+R_{g}(y, k)
$$

so that the differentiability of g at $f(x)$ is equivalent to: for all $\varepsilon_{g}>0$ there is $\delta_{g}=\delta_{g}\left(\varepsilon_{g}\right)>0$ such that

$$
\|k\|<\delta \Rightarrow\left\|R_{g}(f(x), k)\right\| \leq \varepsilon_{g}\|k\|
$$

In order to prove the theorem we need to show that for all $\varepsilon>0$ there exists $\delta>0$ such that

$$
\begin{equation*}
\|h\|<\delta \Rightarrow\|g(f(x+h))-g(f(x))-(D g)(f(x))(D f)(x) h\| \leq \varepsilon\|h\| \tag{1}
\end{equation*}
$$

So let us first express $g(f(x+h))$ using the notation we introduced. We have

$$
g(f(x+h))=g\left(f(x)+(D f)(x) h+R_{f}(x, h)\right)
$$

so with $k=(D f)(x) h+R_{f}(x, h)$ we get

$$
g(f(x+h))=g(f(x))+(D g)(f(x))\left((D f)(x) h+R_{f}(x, h)\right)+R_{g}\left(f(x),(D f)(x) h+R_{f}(x, h)\right)
$$

and so

$$
\begin{aligned}
& \|g(f(x+h))-g(f(x))-(D g)(f(x))(D f)(x) h\| \\
& \quad=\left\|(D g)(f(x)) R_{f}(x, h)+R_{g}\left(f(x),(D f)(x) h+R_{f}(x, h)\right)\right\| \\
& \quad \leq\left\|(D g)(f(x)) R_{f}(x, h)\right\|+\left\|R_{g}\left(f(x),(D f)(x) h+R_{f}(x, h)\right)\right\|
\end{aligned}
$$

by the triangle inequality. Thus, (1) is reached if given $\varepsilon>0$ we find $\delta>0$ such that

$$
\begin{equation*}
\|h\|<\delta \Rightarrow\left\|(D g)(f(x)) R_{f}(x, h)\right\| \leq \frac{\varepsilon}{2}\|h\| \text { and }\left\|R_{g}\left(f(x),(D f)(x) h+R_{f}(x, h)\right)\right\| \leq \frac{\varepsilon}{2}\|h\| . \tag{2}
\end{equation*}
$$

Now, the first inequality is easy to arrange: as

$$
\left\|(D g)(f(x)) R_{f}(x, h)\right\| \leq\|(D g)(f(x))\|\left\|R_{f}(x, h)\right\|,
$$

it suffices if we arrange

$$
\left\|R_{f}(x, h)\right\| \leq \frac{\varepsilon}{2(\|(D g)(f(x))\|+1)}\|h\|
$$

for then

$$
\left\|(D g)(f(x)) R_{f}(x, h)\right\| \leq\|(D g)(f(x))\|\left\|R_{f}(x, h)\right\| \leq \frac{\varepsilon\|(D g)(f(x))\|}{2(\|(D g)(f(x))\|+1)}\|h\| \leq \frac{\varepsilon}{2}\|h\|
$$

But this is now easy: apply the definition of differentiability of f with $\varepsilon_{f}=\frac{\varepsilon}{2(\|(D g)(f(x))\|+1)}$ to get

$$
\delta_{f}=\delta_{f}\left(\frac{\varepsilon}{2(\|(D g)(f(x))\|+1)}\right)
$$

if we take any $\delta \leq \delta_{f}$, then $\|h\| \leq \delta$ implies $\|h\| \leq \delta_{f}$ and thus that (2) holds.
We now turn to the second, more subtle inequality. By the definition of the differentiability of g at $f(x)$, we have that for any $\varepsilon_{g}>0$ there is $\delta_{g}>0$ such that

$$
\begin{equation*}
\left\|(D f)(x) h+R_{f}(x, h)\right\|<\delta_{g} \Rightarrow\left\|R_{g}\left(f(x),(D f)(x) h+R_{f}(x, h)\right)\right\| \leq \varepsilon_{g}\left\|(D f)(x) h+R_{f}(x, h)\right\| \tag{3}
\end{equation*}
$$

So clearly it is important to control $\left\|(D f)(x) h+R_{f}(x, h)\right\|$. Here $(D f)(x) h$ has size comparable to h, $R_{f}(x, h)$ can be made smaller than any multiple of h, but as we are adding this to $(D f)(x) h$ it makes no difference if we make the multiple small (the sum will not be a small multiple anyway). So let's use the definition of the differentiability of f at x with $\varepsilon_{f}=1$: there exists $\delta_{f}=\delta_{f}(1)$ such that

$$
\|h\|<\delta_{f}(1) \Rightarrow\left\|R_{f}(x, h)\right\| \leq\|h\|
$$

Thus, for $\|h\|<\delta_{f}(1)$,

$$
\left\|(D f)(x) h+R_{f}(x, h)\right\| \leq\|D f(x)\|\|h\|+\left\|R_{f}(x, h)\right\| \leq(\|D f(x)\|+1)\|h\|
$$

So, with ε_{g} to be determined still, we have

$$
\begin{align*}
& \|h\|<\delta_{f}(1) \text { and }(\|D f(x)\|+1)\|h\|<\delta_{g}\left(\varepsilon_{g}\right) \Rightarrow \tag{4}\\
& \quad\left\|R_{g}\left(f(x),(D f)(x) h+R_{f}(x, h)\right)\right\| \leq \varepsilon_{g}\left\|(D f)(x) h+R_{f}(x, h)\right\| \leq \varepsilon_{g}(\|D f(x)\|+1)\|h\|
\end{align*}
$$

since $(\|D f(x)\|+1)\|h\|<\delta_{g}\left(\varepsilon_{g}\right)$ implies $\left\|(D f)(x) h+R_{f}(x, h)\right\| \leq(\|D f(x)\|+1)\|h\|<\delta_{g}\left(\varepsilon_{g}\right)$, and now we apply (3). We are now very close. Let $\varepsilon_{g}=\frac{\varepsilon}{2(\|D f(x)\|+1)}$ to get

$$
\delta_{g}=\delta_{g}\left(\frac{\varepsilon}{2(\|D f(x)\|+1)}\right)
$$

Then by (4)

$$
\|h\|<\delta_{f}(1) \text { and }(\|D f(x)\|+1)\|h\|<\delta_{g}\left(\frac{\varepsilon}{2(\|D f(x)\|+1)}\right)
$$

imply

$$
\left\|R_{g}\left(f(x),(D f)(x) h+R_{f}(x, h)\right)\right\| \leq \frac{\varepsilon}{2(\|D f(x)\|+1)}(\|D f(x)\|+1)\|h\|=\frac{\varepsilon}{2}\|h\|
$$

So if

$$
\|h\|<\delta_{f}(1) \text { and }\|h\|<(\|D f(x)\|+1)^{-1} \delta_{g}\left(\frac{\varepsilon}{2(\|D f(x)\|+1)}\right)
$$

then

$$
\left\|R_{g}\left(f(x),(D f)(x) h+R_{f}(x, h)\right)\right\| \leq \frac{\varepsilon}{2}\|h\|
$$

So we now simply let δ to be the minimum of the three constraints we have for $\|h\|$:

$$
\delta=\min \left(\delta_{f}\left(\frac{\varepsilon}{2(\|(D g)(f(x))\|+1)}\right), \delta_{f}(1),(\|D f(x)\|+1)^{-1} \delta_{g}\left(\frac{\varepsilon}{2(\|D f(x)\|+1)}\right)\right)
$$

then $\|h\|<\delta$ implies that

$$
\left\|(D g)(f(x)) R_{f}(x, h)\right\| \leq \frac{\varepsilon}{2}\|h\| \text { and }\left\|R_{g}\left(f(x),(D f)(x) h+R_{f}(x, h)\right)\right\| \leq \frac{\varepsilon}{2}\|h\|
$$

i.e. (2) has been shown. This proves (1) and completes the proof.

