Mathematics Department Stanford University
 Math 51H - Basic algebra

We start with the definition of a group, since it involves only one operation.
Definition 1 A group $(G, *)$ is a set G together with a map $*: G \times G \rightarrow G$ with the properties

1. (Associativity) For all $x, y, z \in G, x *(y * z)=(x * y) * z$.
2. (Units) There exists $e \in G$ such that for all $x \in G, x * e=x=e * x$.
3. (Inverses) For all $x \in G$ there exists $y \in G$ such that $x * y=e=y * x$.

Note that the most conventional notation for a map, such as $*$, is $*(x, y)$; we write however, as usual in this case, $x * y$.
A basic property is that one can talk about the unit, i.e. given (1) and (2), e is unique:
Lemma 1 In any group $(G, *)$, the unit e is unique.

Proof: Suppose $e, f \in G$ are units. Then $e=e * f$ since f is a unit, and $e * f=f$ since e is a unit. Combining these, $e=f$.
Note that this proof used only (1) and (2), so it is useful to define a more general notion than that of a group.

Definition 2 A semigroup $(G, *)$ is a set G together with a map $*: G \times G \rightarrow G$ with the properties

1. (Associativity) For all $x, y, z \in G, x *(y * z)=(x * y) * z$.
2. (Units) There exists $e \in G$ such that for all $x \in G, x * e=x=e * x$.

Thus, a semigroup would be a group if each element had an inverse. Notice also that the proof of the above lemma shows that even in a semigroup, the unit is unique.
We also have that inverses are unique in a group. More generally:
Lemma 2 Suppose that $(G, *)$ is a semigroup with unit $e, x \in G$, and suppose that there exist $y, z \in G$ such that $y * x=e=x * z$. The $y=z$.

Notice that if G is a group, the existence of such a y, z is guaranteed, even with $y=z$, by (3). Thus, this lemma says in particular that in a group, inverses are unique.
However, it says more: in a semigroup, any left inverse (if exists) equals any right inverse (if exists). In particular, if both left and right inverses exist, they are both unique: e.g. if y, y^{\prime} are left inverses, they are both equal to any left inverse z, and thus to each other.

Proof: We have $y=y * e=y *(x * z)$ where we used that e is the unit and $x * z=e$. Similarly, $z=e * z=(y * x) * z$. But by the associativity, $y *(x * z)=(y * x) * z$, so combining these three equations shows that $z=y$, as desired.
There are many interesting groups, such as $(\mathbb{R},+),(\mathbb{Z},+),(\mathbb{Q},+),\left(\mathbb{R}^{n},+\right),\left(\mathbb{R}^{+}, \cdot\right)$, where \mathbb{R}^{+}consists of the positive reals, as well as semigroups, such as (\mathbb{R}, \cdot) (all non-zero elements have inverses), ($\mathbb{Z}, \cdot)$ (only ± 1 have inverses). Another group with a different flavor is $(\mathbb{Z} /(n \mathbb{Z}),+$), the integers modulo $n \geq 2$ integer: as a set, this can be identified with $\{0,1, \ldots, n-1\}$ (the remainders when dividing by n), and addition gives the usual sum in \mathbb{Z}, reduced modulo n, so e.g. in $(\mathbb{Z} /(5 \mathbb{Z}),+), 2+4=1$. It is less confusing though to write $\{[0], \ldots,[n-1]\}$ for the set, and $[2]+[4]=[1]$ then.

In general, when the operation is understood, one might just write the set for a group or semigroup, i.e. say G is a group.

Many (semi)groups are commutative; in fact, all of the above examples are:

Definition 3 A commutative, or abelian, semigroup $(G, *)$ is one in which $x * y=y * x$ for all $x, y \in G$.
Noncommutative semigroups will play a role in this class, including the set M_{n} of $n \times n$ matrices with matrix multiplication as the operation, which is non-commutative if $n \geq 2$, and permutations of a finite set S which is non-commutative if the set has at least 3 elements (this will be discussed when we talk about determinants).
We then can make the following definition:
Definition $4 A$ field $(F,+, \cdot)$ is a set F with two maps $+: F \times F \rightarrow F$ and $\cdot: F \times F \rightarrow F$ such that

1. $(F,+)$ is a commutative group, with unit 0 .
2. (F, \cdot) is a commutative semigroup with unit 1 such that $1 \neq 0$ and such that $x \neq 0$ implies that x has a multiplicative inverse (i.e. y such that $x \cdot y=1=y \cdot x$).
3. The distributive law holds:

$$
x \cdot(y+z)=x \cdot y+x \cdot z .
$$

One usually writes $-x$ for the additive inverse (inverse with respect to +), x^{-1} for the multiplicative inverse.
Examples then include $(\mathbb{R},+, \cdot),(\mathbb{Q},+, \cdot)$, and indeed complex numbers $(\mathbb{C},+, \cdot)$.
A more interesting field is the subset of \mathbb{R} given by numbers of the form

$$
\{a+b \sqrt{2}: a, b \in \mathbb{Q}\} .
$$

The most interesting part in showing that this is a field is that multiplicative inverses exist; that these exist (within this set!) when $a+b \sqrt{2} \neq 0$ follows from the following computation in \mathbb{R} :

$$
(a+b \sqrt{2})^{-1}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}=\left(a^{2}-2 b^{2}\right)^{-1} a-\left(a^{2}-2 b^{2}\right)^{-1} b \sqrt{2} .
$$

Notice that $\left(a^{2}-2 b^{2}\right)^{-1} a,-\left(a^{2}-2 b^{2}\right)^{-1} b$ are indeed rational, and $a^{2}-2 b^{2} \neq 0$ as follows from Homework 1, problem 4.

Finally, $(\mathbb{Z} /(n \mathbb{Z}),+, \cdot)$ is not a field in general; e.g. if $n=6,[2] \cdot[3]=[0]$. However, if n is a prime p, then it is - it is the finite field of $p=n$ elements.

As an example of a general result in a field:
Lemma 3 If $(F,+, \cdot)$ is a field, then $0 \cdot x=0$ for all $x \in F$.

Proof: Since $0=0+0$, we have

$$
0 \cdot x=(0+0) \cdot x=0 \cdot x+0 \cdot x,
$$

so

$$
0=-(0 \cdot x)+(0 \cdot x)=-(0 \cdot x)+(0 \cdot x+0 \cdot x)=(-(0 \cdot x)+0 \cdot x)+0 \cdot x=0+0 \cdot x=0 \cdot x,
$$

as desired. On the last line, the first equation is that $-(0 \cdot x)$ is the additive inverse of $0 \cdot x$, the second substitutes in the previous line, the third is associativity, the fourth is again that $-(0 \cdot x)$ is the additive inverse of $0 \cdot x$, while the fifth is that 0 is the additive unit.
Notice that this proof uses the distributive law crucially: this is what links addition (0 is the additive unit!) to multiplication.
For more examples, see Appendix A, Problem 1.1. Note that (ii) is the statement that if $x, y \neq 0$ then $x \cdot y \neq 0$, which in particular shows easily that $(\mathbb{Z} /(n \mathbb{Z}),+, \cdot)$ is not a field if $n \geq 2$ is not a prime. (There is a bit more work in showing that if $n=p$ is a prime, this is a field.)

