Mathematics Department Stanford University Math 51H – Basic algebra

We start with the definition of a group, since it involves only one operation.

Definition 1 A group (G, *) is a set G together with a map $*: G \times G \to G$ with the properties

1. (Associativity) For all $x, y, z \in G$, x * (y * z) = (x * y) * z.

- 2. (Units) There exists $e \in G$ such that for all $x \in G$, x * e = x = e * x.
- 3. (Inverses) For all $x \in G$ there exists $y \in G$ such that x * y = e = y * x.

Note that the most conventional notation for a map, such as *, is *(x, y); we write however, as usual in this case, x * y.

A basic property is that one can talk about the unit, i.e. given (1) and (2), e is unique:

Lemma 1 In any group (G, *), the unit e is unique.

Proof: Suppose $e, f \in G$ are units. Then e = e * f since f is a unit, and e * f = f since e is a unit. Combining these, e = f. \Box

Note that this proof used only (1) and (2), so it is useful to define a more general notion than that of a group.

Definition 2 A semigroup (G, *) is a set G together with a map $*: G \times G \to G$ with the properties

- 1. (Associativity) For all $x, y, z \in G$, x * (y * z) = (x * y) * z.
- 2. (Units) There exists $e \in G$ such that for all $x \in G$, x * e = x = e * x.

Thus, a semigroup would be a group if each element had an inverse. Notice also that the proof of the above lemma shows that even in a semigroup, the unit is unique.

We also have that inverses are unique in a group. More generally:

Lemma 2 Suppose that (G, *) is a semigroup with unit $e, x \in G$, and suppose that there exist $y, z \in G$ such that y * x = e = x * z. The y = z.

Notice that if G is a group, the existence of such a y, z is guaranteed, even with y = z, by (3). Thus, this lemma says in particular that in a group, inverses are unique.

However, it says more: in a semigroup, any left inverse (if exists) equals any right inverse (if exists). In particular, *if* both left and right inverses exist, they are both unique: e.g. if y, y' are left inverses, they are both equal to any left inverse z, and thus to each other.

Proof: We have y = y * e = y * (x * z) where we used that e is the unit and x * z = e. Similarly, z = e * z = (y * x) * z. But by the associativity, y * (x * z) = (y * x) * z, so combining these three equations shows that z = y, as desired. \Box

There are many interesting groups, such as $(\mathbb{R}, +)$, $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}^n, +)$, (\mathbb{R}^+, \cdot) , where \mathbb{R}^+ consists of the positive reals, as well as semigroups, such as (\mathbb{R}, \cdot) (all non-zero elements have inverses), (\mathbb{Z}, \cdot) (only ± 1 have inverses). Another group with a different flavor is $(\mathbb{Z}/(n\mathbb{Z}), +)$, the integers modulo $n \geq 2$ integer: as a set, this can be identified with $\{0, 1, \ldots, n-1\}$ (the remainders when dividing by n), and addition gives the usual sum in \mathbb{Z} , reduced modulo n, so e.g. in $(\mathbb{Z}/(5\mathbb{Z}), +)$, 2 + 4 = 1. It is less confusing though to write $\{[0], \ldots, [n-1]\}$ for the set, and [2] + [4] = [1] then.

In general, when the operation is understood, one might just write the set for a group or semigroup, i.e. say G is a group.

Many (semi)groups are commutative; in fact, all of the above examples are:

Noncommutative semigroups will play a role in this class, including the set M_n of $n \times n$ matrices with matrix multiplication as the operation, which is non-commutative if $n \ge 2$, and permutations of a finite set S which is non-commutative if the set has at least 3 elements (this will be discussed when we talk about determinants).

We then can make the following definition:

Definition 4 A field $(F, +, \cdot)$ is a set F with two maps $+: F \times F \to F$ and $\cdot: F \times F \to F$ such that

- 1. (F, +) is a commutative group, with unit 0.
- 2. (F, \cdot) is a commutative semigroup with unit 1 such that $1 \neq 0$ and such that $x \neq 0$ implies that x has a multiplicative inverse (i.e. y such that $x \cdot y = 1 = y \cdot x$).
- 3. The distributive law holds:

$$x \cdot (y+z) = x \cdot y + x \cdot z.$$

One usually writes -x for the additive inverse (inverse with respect to +), x^{-1} for the multiplicative inverse.

Examples then include $(\mathbb{R}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, and indeed complex numbers $(\mathbb{C}, +, \cdot)$.

A more interesting field is the subset of \mathbb{R} given by numbers of the form

$$\{a+b\sqrt{2}: a,b\in\mathbb{Q}\}.$$

The most interesting part in showing that this is a field is that multiplicative inverses exist; that these exist (within this set!) when $a + b\sqrt{2} \neq 0$ follows from the following computation in \mathbb{R} :

$$(a+b\sqrt{2})^{-1} = \frac{a-b\sqrt{2}}{a^2-2b^2} = (a^2-2b^2)^{-1}a - (a^2-2b^2)^{-1}b\sqrt{2}.$$

Notice that $(a^2 - 2b^2)^{-1}a, -(a^2 - 2b^2)^{-1}b$ are indeed rational, and $a^2 - 2b^2 \neq 0$ as follows from Homework 1, problem 4.

Finally, $(\mathbb{Z}/(n\mathbb{Z}), +, \cdot)$ is not a field in general; e.g. if n = 6, $[2] \cdot [3] = [0]$. However, if n is a prime p, then it is — it is the finite field of p = n elements.

As an example of a general result in a field:

Lemma 3 If $(F, +, \cdot)$ is a field, then $0 \cdot x = 0$ for all $x \in F$.

Proof: Since 0 = 0 + 0, we have

$$0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x,$$

 \mathbf{SO}

$$0 = -(0 \cdot x) + (0 \cdot x) = -(0 \cdot x) + (0 \cdot x + 0 \cdot x) = (-(0 \cdot x) + 0 \cdot x) + 0 \cdot x = 0 + 0 \cdot x = 0 \cdot x,$$

as desired. On the last line, the first equation is that $-(0 \cdot x)$ is the additive inverse of $0 \cdot x$, the second substitutes in the previous line, the third is associativity, the fourth is again that $-(0 \cdot x)$ is the additive inverse of $0 \cdot x$, while the fifth is that 0 is the additive unit. \Box

Notice that this proof uses the distributive law crucially: this is what links addition (0 is the additive unit!) to multiplication.

For more examples, see Appendix A, Problem 1.1. Note that (ii) is the statement that if $x, y \neq 0$ then $x \cdot y \neq 0$, which in particular shows easily that $(\mathbb{Z}/(n\mathbb{Z}), +, \cdot)$ is not a field if $n \geq 2$ is not a prime. (There is a bit more work in showing that if n = p is a prime, this is a field.)