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We start with the definition of a group, since it involves only one operation.

Definition 1 A group (G, ∗) is a set G together with a map ∗ : G×G→ G with the properties

1. (Associativity) For all x, y, z ∈ G, x ∗ (y ∗ z) = (x ∗ y) ∗ z.

2. (Units) There exists e ∈ G such that for all x ∈ G, x ∗ e = x = e ∗ x.

3. (Inverses) For all x ∈ G there exists y ∈ G such that x ∗ y = e = y ∗ x.

Note that the most conventional notation for a map, such as ∗, is ∗(x, y); we write however, as usual
in this case, x ∗ y.

A basic property is that one can talk about the unit, i.e. given (1) and (2), e is unique:

Lemma 1 In any group (G, ∗), the unit e is unique.

Proof: Suppose e, f ∈ G are units. Then e = e ∗ f since f is a unit, and e ∗ f = f since e is a unit.
Combining these, e = f . �

Note that this proof used only (1) and (2), so it is useful to define a more general notion than that of
a group.

Definition 2 A semigroup (G, ∗) is a set G together with a map ∗ : G×G→ G with the properties

1. (Associativity) For all x, y, z ∈ G, x ∗ (y ∗ z) = (x ∗ y) ∗ z.

2. (Units) There exists e ∈ G such that for all x ∈ G, x ∗ e = x = e ∗ x.

Thus, a semigroup would be a group if each element had an inverse. Notice also that the proof of the
above lemma shows that even in a semigroup, the unit is unique.

We also have that inverses are unique in a group. More generally:

Lemma 2 Suppose that (G, ∗) is a semigroup with unit e, x ∈ G, and suppose that there exist y, z ∈ G
such that y ∗ x = e = x ∗ z. The y = z.

Notice that if G is a group, the existence of such a y, z is guaranteed, even with y = z, by (3). Thus,
this lemma says in particular that in a group, inverses are unique.

However, it says more: in a semigroup, any left inverse (if exists) equals any right inverse (if exists).
In particular, if both left and right inverses exist, they are both unique: e.g. if y, y ′ are left inverses,
they are both equal to any left inverse z, and thus to each other.

Proof: We have y = y ∗ e = y ∗ (x ∗ z) where we used that e is the unit and x ∗ z = e. Similarly,
z = e ∗ z = (y ∗ x) ∗ z. But by the associativity, y ∗ (x ∗ z) = (y ∗ x) ∗ z, so combining these three
equations shows that z = y, as desired. �

There are many interesting groups, such as (R,+), (Z,+), (Q,+), (Rn,+), (R+, ·), where R+ consists
of the positive reals, as well as semigroups, such as (R, ·) (all non-zero elements have inverses), (Z, ·)
(only ±1 have inverses). Another group with a different flavor is (Z/(nZ),+), the integers modulo
n ≥ 2 integer: as a set, this can be identified with {0, 1, . . . , n− 1} (the remainders when dividing by
n), and addition gives the usual sum in Z, reduced modulo n, so e.g. in (Z/(5Z),+), 2 + 4 = 1. It is
less confusing though to write {[0], . . . , [n− 1]} for the set, and [2] + [4] = [1] then.

In general, when the operation is understood, one might just write the set for a group or semigroup,
i.e. say G is a group.

Many (semi)groups are commutative; in fact, all of the above examples are:



Definition 3 A commutative, or abelian, semigroup (G, ∗) is one in which x∗y = y∗x for all x, y ∈ G.

Noncommutative semigroups will play a role in this class, including the set Mn of n×n matrices with
matrix multiplication as the operation, which is non-commutative if n ≥ 2, and permutations of a
finite set S which is non-commutative if the set has at least 3 elements (this will be discussed when
we talk about determinants).

We then can make the following definition:

Definition 4 A field (F,+, ·) is a set F with two maps + : F × F → F and · : F × F → F such that

1. (F,+) is a commutative group, with unit 0.

2. (F, ·) is a commutative semigroup with unit 1 such that 1 6= 0 and such that x 6= 0 implies that
x has a multiplicative inverse (i.e. y such that x · y = 1 = y · x).

3. The distributive law holds:
x · (y + z) = x · y + x · z.

One usually writes −x for the additive inverse (inverse with respect to +), x−1 for the multiplicative
inverse.

Examples then include (R,+, ·), (Q,+, ·), and indeed complex numbers (C,+, ·).
A more interesting field is the subset of R given by numbers of the form

{a + b
√

2 : a, b ∈ Q}.

The most interesting part in showing that this is a field is that multiplicative inverses exist; that these
exist (within this set!) when a + b

√
2 6= 0 follows from the following computation in R:

(a + b
√

2)−1 =
a− b

√
2

a2 − 2b2
= (a2 − 2b2)−1a− (a2 − 2b2)−1b

√
2.

Notice that (a2 − 2b2)−1a,−(a2 − 2b2)−1b are indeed rational, and a2 − 2b2 6= 0 as follows from
Homework 1, problem 4.

Finally, (Z/(nZ),+, ·) is not a field in general; e.g. if n = 6, [2] · [3] = [0]. However, if n is a prime p,
then it is — it is the finite field of p = n elements.

As an example of a general result in a field:

Lemma 3 If (F,+, ·) is a field, then 0 · x = 0 for all x ∈ F .

Proof: Since 0 = 0 + 0, we have

0 · x = (0 + 0) · x = 0 · x + 0 · x,

so

0 = −(0 · x) + (0 · x) = −(0 · x) + (0 · x + 0 · x) = (−(0 · x) + 0 · x) + 0 · x = 0 + 0 · x = 0 · x,

as desired. On the last line, the first equation is that −(0 · x) is the additive inverse of 0 · x, the
second substitutes in the previous line, the third is associativity, the fourth is again that −(0 · x) is
the additive inverse of 0 · x, while the fifth is that 0 is the additive unit. �

Notice that this proof uses the distributive law crucially: this is what links addition (0 is the additive
unit!) to multiplication.

For more examples, see Appendix A, Problem 1.1. Note that (ii) is the statement that if x, y 6= 0 then
x · y 6= 0, which in particular shows easily that (Z/(nZ),+, ·) is not a field if n ≥ 2 is not a prime.
(There is a bit more work in showing that if n = p is a prime, this is a field.)


